Volume 11 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
LIU Jing-ru, HU Zhi-yun. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 2018, 11(4): 531-549. doi: 10.3788/CO.20181104.0531
Citation: LIU Jing-ru, HU Zhi-yun. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 2018, 11(4): 531-549. doi: 10.3788/CO.20181104.0531

Applications of measurement techniques based on lasers in combustion flow field diagnostics

Funds:

National Natural Science Foundation of China 91541203

More Information
  • Corresponding author: HU Zhi-yun, E-mail:huzhiyun@nint.ac.cn
  • Received Date: 14 Dec 2017
  • Rev Recd Date: 04 Feb 2018
  • Publish Date: 01 Aug 2018
  • In this paper, the diagnostic requirements and challenges of turbulent combustion in industrial engines are introduced. The main parameters for laser measurement techniquese such as concentration, temperature, and velocity of the combustion flow field are presented. The basic principles of the measurement technology, the application in combustion field diagnosis and the research status at home and abroad are described, and the characteristics and applicability of different technologies are analyzed. The role and progress of multi-parameter comprehensive diagnosis are briefly introduced. The main problems and trends in the current diagnosis and measurement are discussed.

     

  • loading
  • [1]
    KOHSE-HÖINGHAUS K, JEFFRIES J B主编; 刘晶儒, 叶景峰, 陶波, 等译. 应用燃烧诊断学[M]. 北京: 国防工业出版社, 2017.

    KOHSE-HÖINGHAUS K, JEFFRIES J B. Applied Combustion Diagnostics[M]. Taylor & Francies, 2002.
    [2]
    刘晶儒, 胡志云, 张振荣, 等.激光光谱技术在燃烧流场诊断中的应用[J].光学 精密工程, 2011, 19(2):284-295. http://www.doc88.com/p-0999088798722.html

    LIU J R, HU ZH Y, ZHANG ZH R, et al.. Laser spectroscopy applied to combustion diagnostics[J]. Opt. Precision Eng., 2011, 19(2):284-295.(in chinese) http://www.doc88.com/p-0999088798722.html
    [3]
    GRADY N R, FRANKLAND J H, PITZ R W. UV Raman Scattering Measurements of Supersonic Reacting Flow over a Piloted, Ramped Cavity[R]. AIAA, 2012: 0614.
    [4]
    WEDR L, MEIER W, KUTNE P, et al.. Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure[J]. Proceedings of the Combustion Institute, 2007, 31:3099-3106. doi: 10.1016/j.proci.2006.07.148
    [5]
    LOCKE R J. Temperature and species measurements of combustion produced by a 9-point lean direct injector[R]. AIAA, 2013: 0562.
    [6]
    张振荣, 叶景峰, 王晟, 等.煤油燃烧场主要组分浓度测量[J].强激光与粒子束, 2014, 26(7):019003. http://mall.cnki.net/magazine/article/QJGY201408018.htm

    ZHANG ZH R, YE J F, WANG SH, et al.. Measurements of major species concentration in kerosene combustion[J]. High Power Laser and Particle Beams, 2014, 26(7):019003.(in Chinese) http://mall.cnki.net/magazine/article/QJGY201408018.htm
    [7]
    张振荣, 胡志云, 黄梅生, 等.纳秒级激光脉冲展宽系统的分析及应用[J].光学 精密工程, 2011, 19(2):311-315. https://wenku.baidu.com/view/8a7fe149be1e650e52ea9982.html

    ZHANG ZH R, HU ZH Y, HUANG M SH, et al.. Analysis and application of nanosecond laser pulse stretching system[J]. Opt. Precision Eng., 2011, 19(2):311-315.(in chinese) https://wenku.baidu.com/view/8a7fe149be1e650e52ea9982.html
    [8]
    CROSLEY D R. Laser Probes for Combustion Chemistry[R]. Amer. Chem. Soc. Symposium Series #134, American Chemical Society, Washington, D. C., USA, 1980.
    [9]
    ECKBRETH A C. Laser Diagnostics for Combustion Temperature and Species[R]. 2nd Ed., Gordon and Breach, 1996.
    [10]
    KOHSE-HÖINGHAUS K. Laser techniques for the quantitative detection of reactive intermediates in combustion systems[J]. Progr. Energy Combust.Sci., 1994, 20:203-279. doi: 10.1016/0360-1285(94)90015-9
    [11]
    DAILY J W. Laser induced fluorescence spectroscopy in flames[J]. Progr. Energy Combust.Sci., 1997, 23:133-199. doi: 10.1016/S0360-1285(97)00008-7
    [12]
    SCHIFFMAN A, CHANDLER D W. Experimental Measurements of State Resolved, Rotationally Inelastic Energy Transfer[J]. Int. Rev.Phys. Chem., 1995, 14:371-420. doi: 10.1080/01442359509353315
    [13]
    DAILY J W, ROTHE E W. Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced fluorescence[J]. Appl. Phys. B, 1999, 68:131-140, . doi: 10.1007/s003400050597
    [14]
    关小伟. 燃烧诊断中激光诱导荧光和简并四波混频技术研究[D]. 西安: 西北核技术研究所, 2006.

    GUAN X W. The research on laser induced fluorescence and degenerate four wave-mixing techniques for combustion diagnostics[D]. Xi'an: Northwest Institute of Nuclear Technology, 2006. (in chinese)
    [15]
    BYRNE S O, STOTZ I, HOUWING A F P, et al. . OH PLIF imaging of supersonic combustion using cavity injection[R]. AIAA, 2005: 3357.
    [16]
    STRAKEY P A, WOODRUFF S D, WILLIAMS T C, et al. . OH-PLIF measurements of high-pressure, hydrogen augmented premixed flames in the simval combustor[R]. AIAA, 2007: 980.
    [17]
    ANDRESEN P, SCHLUTER H, WOLFF D, et al.. Identification and Imaging of OH(v″=0) and O2(v″=6 or 7) in an automobile spark-ignition engine using a tunable krf excimer laser[J]. Appl. Optics, 1992, 31:7684-7689. doi: 10.1364/AO.31.007684
    [18]
    ZHOU B, BRACKMANN C, LI Z S, et al.. Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime[J]. Proceedings of the Combustion Institute, 2015, 35:1409-1416. doi: 10.1016/j.proci.2014.06.107
    [19]
    SLABAUGH C D, PRATT A C, LUCHT R P. Simultaneous 5 kHz OH-PLIF/PIV for the study of turbulent combustion at engine conditions[J]. Appl. Phys. B, 2015, 118:109-130. doi: 10.1007/s00340-014-5960-5
    [20]
    MERCIER X, JAMETTE P, PAUWELS J F, DESGROUX P. Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame[J]. Chem. Phys. Lett., 1999, 305:334-342. doi: 10.1016/S0009-2614(99)00416-9
    [21]
    THOMAN J W, MCILROY A. Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A2Δ-X2Π Transition[J]. J. Phys. Chem. A, 2000, 104:4953-4961. doi: 10.1021/jp0001687
    [22]
    LUQUE J, JEFFRIES J B, SMITH G P, et al.. Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in low pressure CH4-O2-N2, and CH4-NO-O2-N2 flames[J]. Combust. Flame, 2001, 126:1725-1735. doi: 10.1016/S0010-2180(01)00286-3
    [23]
    MERCIER X, THERSSEN E, PAUWELS J F, et al.. Quantitative features and sensitivity of cavity ring-down measurements of species concentrations in flames[J]. Combust. Flame, 2001, 125:656-667. https://www.sciencedirect.com/science/article/pii/S0360128598000227
    [24]
    EVERTSEN R, STOLK R L, MEULEN J J. Investigations of cavity ring down spectroscopy applied to the detection of ch in atmospheric flames[J]. Combust. Sci. Technol., 1999, 149:19-34. doi: 10.1080/00102209908952097
    [25]
    MEIJER G, BOOGAARTS M G H, JONGMA R T, et al.. Coherent cavity ring down spectroscopy[J]. Chem.Phys. Lett., 1994, 217:112-116. doi: 10.1016/0009-2614(93)E1361-J
    [26]
    LOZOVSKY V A, DERZY I, CHESKIS S. Nonequilibrium concentrations of the vibrationally excited OH radical in a methane flame measured by cavity ring-down spectroscopy[J]. Chem. Phys. Lett., 1998, 284:407-411, . doi: 10.1016/S0009-2614(97)01443-7
    [27]
    MCILROY A. Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy[J]. Chem. Phys. Lett., 1998, 296:151-158, . doi: 10.1016/S0009-2614(98)01022-7
    [28]
    SCHERER J J, ANIOLEK K W, CERNANSKY N P, et al.. Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy[J]. J. Chem. Phys., 1997, 107:6196-6203, . doi: 10.1063/1.474284
    [29]
    LUQUE J, JEFFRIES J B, SMITH G P, et al.. Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser induced fluorescence in a methane/air low pressure flame[J]. Appl. Phys. B, 2001, 73:731-738, . https://www.researchgate.net/publication/229401569_Laser-induced_fluorescence_detection_of_HCO_in_a_low-pressure_flame
    [30]
    SCHERER J J, RAKESTRAW D J. Cavity ringdown laser absorption spectroscopy detection of formyl(HCO) radical in a low pressure flame[J]. Chem. Phys. Lett., 1997, 265:169-176. doi: 10.1016/S0009-2614(96)01403-0
    [31]
    NYHOLM K, MAIER R, AMINOFF C G, et al.. Detection of OH in flames by using polarization spectroscopy[J]. Appl. Opt., 1993, 32:919-924. doi: 10.1364/AO.32.000919
    [32]
    REICHARDT T A, GIANCOLA W C, LUCHT R P. Experimental investigation of satuated polarizationspectroscopy for quantitative concentration measurements[J]. Appl. Opt., 2000, 39:2002-2008. doi: 10.1364/AO.39.002002
    [33]
    NYHOLM K, FRITZON R, ALDEN M. Two-dimensional imaging of OH in flames by use of polarization spectroscopy[J]. Optics Lett., 1993, 18:1672-1674. doi: 10.1364/OL.18.001672
    [34]
    SUVERNEV A A, DREIZIER A, DREIER T, et al.. Polarization spectroscopic measurement and spectral simulation of OH(A2Σ-X2Π) and NH(A3Π-X3Σ) transitions in atmospheric pressure flames[J]. Appl. Phys. B, 1995, 61:421-427. doi: 10.1007/BF01081270
    [35]
    NYHOLM K, KAIVOLA M, AMINOFF C G. Polarization spectroscopy applied to C2 detection in a flame[J]. Appl. Phys. B, 1995, 60:5-10. doi: 10.1007/BF01082066
    [36]
    NYHOLM K, FRITZON R, GEORGIEV N, et al.. Two photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames[J]. Optics Commun., 1995, 114:76-82. doi: 10.1016/0030-4018(94)00554-8
    [37]
    张振荣, 黄梅生, 胡志云, 等.二维偏振光谱技术对燃烧场的诊断[J].工程热物理学报, 2010, 31(11):1973-1976. http://www.cqvip.com/QK/90922X/201011/35677311.html

    ZHANG ZH R, HU ZH Y, HUANG M SH, et al. Detection of OH in flames by using single-pulse two-dimensional polarization spectroscopy[J]. Journal of Engineering Thermophysics, 2010, 31(11):1973-1976.(in chinese). http://www.cqvip.com/QK/90922X/201011/35677311.html
    [38]
    STEINBERG A M, ARNDT C M, STOPPER U, et al. . Diagnostic requirements for the development of low-emission, fuel-flexible gas turbine combustors[R]. AIAA, 2012: 0698.
    [39]
    HASSA C, WILLERT C, FISCHER M, et al. . Nonintrusive flowield, temperature and species measurements on a generic aeroengine combustor at elevated pressure[C]. Proceedings of ASME Turbo Expo, Barcelona, Spain, 2006: GT2006-90213.
    [40]
    HARIYAN M T, BHUIYAN A, MEYER S, et al.. Dual-pump coherent anti-stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility[J]. Meas. Sci. Technol., 2011, 22:015301. doi: 10.1088/0957-0233/22/1/015301
    [41]
    EWART P, WILLIAMS R, LIM E, et al.. Comparison of in-Cylinder coherent anti-stokes-Raman scattering temperature measurements with predictions from an engine simulation[J]. Int. J. Engine Research, 2001, 2:146-162. http://jer.sagepub.com/content/2/2/149.short
    [42]
    BRACKMANN C, BOOD J, AFZELIUS M, et al.. Thermometry in internal combustion engines via dual-broadband rotational coherent anti-stokes Raman spectroscopy[J]. Meas. Sci. Technol., 2004, 15:R13-R25. doi: 10.1088/0957-0233/15/3/R01
    [43]
    MAGNOTTI G, CUTLER A D, DANEHY P. Development of a dual-pump CARS system for measurements in a supersonic combusting free jet[R]. AIAA, 2012: 1193.
    [44]
    赵建荣, 杨仕润, 俞刚.CARS在超音速燃烧研究中的应用[J].激光技术, 2000, 24(4):207-212. http://www.cnki.com.cn/Article/CJFDTOTAL-JGJS200004003.htm

    ZHAO J R, YANG SH R, YU G. Study of supersonic combustion by CARS measurement technique[J]. Laser Technology, 2000, 24(4):207-212.(in chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGJS200004003.htm
    [45]
    DAVIS L C, MARKO K A, ROMAI L. Angular distribution of coherent Raman emission in degenerate four-wave mixing with pumping by a single diffraction coupled laser beam:configurations for high spatial resolution[J]. Applied Optics, 1981, 20(9):1685-1690. doi: 10.1364/AO.20.001685
    [46]
    HU ZH Y, LIU J R, YE J F, et al.. Laser-based measurements of temperature, species and velocity in engine combustor[J]. Proceedings of SPIE, 2013, 8796:87961G. doi: 10.1117/12.2011241.full
    [47]
    OKOJIE R S, DANEHY P M, WATKINS A N, et al. . An overview of NASA hypersonic experimental diagnostic and instrumentation technologies for ground and flight testing[R]. AIAA, 2009: 7279.
    [48]
    李国华, 胡志云, 王晟, 等.基于相干反斯托克斯拉曼散射的二维温度场扫描测量[J].光学精密工程, 2016, 24(1):14-19. http://mall.cnki.net/magazine/Article/GXJM201601003.htm

    LI G H, HU ZH Y, WANG SH, et al.. 2D scanning CARS for temperature distribution measurement[J]. Opt. Precision Eng., 2016, 24(1):14-19.(in chinese) http://mall.cnki.net/magazine/Article/GXJM201601003.htm
    [49]
    张立荣, 胡志云, 叶景峰, 等.移动式CARS系统测量超音速燃烧室出口温度[J].中国激光, 2013, 40(4):0408007. http://www.opticsjournal.net/abstract.htm?id=OJ130407000226SoVrXu

    ZHANG L R, HU ZH Y, YE J F, et al.. Mobile CARS temperature measurements at exhaust of supersonic combustor[J]. Chinese Journal of Lasers, 2013, 40(4):0408007.(in chinese) http://www.opticsjournal.net/abstract.htm?id=OJ130407000226SoVrXu
    [50]
    ROY S, MEYER T R. Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals[J]. Applied Physics Letters, 2005, 87:264103. doi: 10.1063/1.2159576
    [51]
    ECKBRETH A C, HALL R J. CARS concentration sensitivity with and without nonresonant background suppression[J]. Combust. Sci. Technol., 1981, 25:175-192. doi: 10.1080/00102208108547501
    [52]
    ROY S, GORD J R, PATNAIK A K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy:fundamental developments and applications in reacting flows[J]. Progress in Energy and Combustion Science, 2010, 36:280-306. doi: 10.1016/j.pecs.2009.11.001
    [53]
    陶波, 王晟, 胡志云, 等.TDLAS与CARS共线测量发动机温度[J].工程热物理学报, 2015, 36(10):2282-2286. http://www.cqvip.com/QK/90922X/201510/666366768.html

    TAO B, WANG SH, HU ZH Y, et al. Measurements of engine combustion temperature by using coaxial TDLAS and CARS technique[J]. Journal of Engineering Thermophysics, 2015, 36(10):2282-2286.(in chinese). http://www.cqvip.com/QK/90922X/201510/666366768.html
    [54]
    SUTTON G., LEVICK A, EDWARDS G., GREENHALGH D. A combustion temperature and species standard for the calibration of laser diagnostic techniques[J]. Combustion and Flame, 2006, 147:39-48. doi: 10.1016/j.combustflame.2006.07.013
    [55]
    王晟, 刘晶儒, 胡志云, 等.用于燃烧场诊断的分子滤波瑞利散射技术[J].光学 精密工程, 2011, 19(2):445-451. http://www.eope.net/fileup/PDF/20110232.pdf

    WANG SH, LIU J R, HU ZH Y, et al.. Development of filtered Rayleigh scattering for combustion diagnostic application[J]. Opt. Precision Eng., 2011, 19(2):445-451.(in chinese) http://www.eope.net/fileup/PDF/20110232.pdf
    [56]
    TENTI G, BOLEY C D, DESAI R C. On the kinetic model description of Rayleigh-scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(4):285-290. doi: 10.1139/p74-041
    [57]
    KEARNEY S P, BERESH S J, GRASSER T W. A filtered rayleigh scattering apparatus for gas-phase and combustion temperature imaging[R]. AIAA, 2003: 584.
    [58]
    KEARNEY S P, BERESH S J, GRASSER T W, et al. . Filtered Rayleigh Scattering thermometry in vortex-strained and sooting flames[R]. AIAA, 2004: 1358.
    [59]
    关小伟, 刘晶儒, 黄梅生, 等.PLIF法定量测量甲烷-空气火焰二维温度场分布[J].强激光与粒子束, 2005, 17(2):173-176. http://www.chinabaike.com/t/30815/2014/1208/3039161.html

    GUAN X W, LIU J R, HUANG M SH, et al.. Two-dimensional temperature field measurement in a methane-air flame by PLIF[J]. High Power Laser and Particle Beams, 2005, 17(2):173-176.(in Chinese) http://www.chinabaike.com/t/30815/2014/1208/3039161.html
    [60]
    PALMER J L, HANSON R K. Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence[J]. Applied Optics, 1996, 35(3):485-499. doi: 10.1364/AO.35.000485
    [61]
    MEIER U E, GABMANN D W, STRICKER W. LIF imaging and 2D temperature mapping in a model combustor at elevated pressure[J]. Aerospace Science and Technology, 2000, 4:403-414. doi: 10.1016/S1270-9638(00)00142-5
    [62]
    VYRODOV A O, HEINZE J, DILLMANN M, et al.. Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0-0) transitions in the exhaust gas of high pressure CH4/Air flames[J]. Appl. Phys. B, 1995, 61:409-414. doi: 10.1007/BF01081268
    [63]
    SCHULZ C, SICK V, HEINZE J, et al.. Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A-X (0, 2) excitation[J]. Appl. Optics, 1997, 36:3227-3232. doi: 10.1364/AO.36.003227
    [64]
    PALMER J L, MCMILLIN B K, HANSON R K. Multi-line fluorescence imaging of the rotational temperature field in a shock-tunnel free jet[J]. Appl. Phys. B, 1996, 63:167-178. doi: 10.1007%2F978-3-540-77980-3_10
    [65]
    KAMINSKI C F, ENGSTR M J, ALD N M. Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence[J]. Proceedings of Combustion Institute, 1998, 27:85-93. doi: 10.1016/S0082-0784(98)80393-7
    [66]
    MEDWELL P R, CHAN Q N, KALT P A M, et al.. Development of temperature imaging using two-line atomic fluorescence[J]. Applied Optics, 2009, 48:1237-48. doi: 10.1364/AO.48.001237
    [67]
    MEDWELL P R, CHAN Q N, KALT P A M, et al.. Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence[J]. Applied Spectroscopy, 2010, 64:173-186. doi: 10.1366/000370210790619573
    [68]
    CHAN Q N, MEDWELL P R, ALWAHABI Z T, et al.. Assessment of interferences to nonlinear two-line atomic fluorescence(NTLAF) in sooty flames[J]. Applied Physics B, 2011, doi: 10.1007/s00340-011-4497-0.
    [69]
    汪亮.燃烧实验诊断学[M].北京:国防工业出版社, 2011.

    WANG L. Combustion Experiment Diagnostics[M]. Beijing:Defense Industry Publishing House, 2011.
    [70]
    叶景峰, 胡志云, 刘晶儒, 等.分子标记速度测量技术及应用研究进展[J].实验流体力学, 2015, 29(3):11-17. http://www.oalib.com/paper/4429701

    YE J F, HU ZH Y, LIU J R, et al.. Development and application of molecular tagging velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):11-17.(in Chinese) http://www.oalib.com/paper/4429701
    [71]
    MILES R, COHEN C, CONNORS J, et al.. Velocity measurements by vibrational tagging and fluorescent probing of oxygen[J]. Optics Letters, 1987, 12(11):861-863. http://www.ncbi.nlm.nih.gov/pubmed/19741896
    [72]
    MATT W, WALTER L A. Simplified and portable RELIEF flow tagging velocimetry system[R]. AIAA, 2008: 3757.
    [73]
    MICHAEL J B, EDWARDS M R, DOGARIU A, et al.. Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air[J]. Applied Optics, 2011, 50(26):5158-5162. https://www.researchgate.net/publication/263832236_Femtosecond_Laser_Electronic_Excitation_Tagging_FLEET_for_Imaging_Flow_Structure_in_Unseeded_Air
    [74]
    SHIRLEY J A, BOEDEKER L R. Non-intrusive Space Shuttle Main Engine nozzle exit diagnostics[R]. AIAA, 1988: 3088.
    [75]
    WEHRMEYER J A, RIBAROV L A, OGUSS D A, et al.. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J]. Applied Optics, 1999, 38(22):6912-6917.
    [76]
    PITZ R W, LAHR M D, DOUGLAS Z W, et al.. Hydroxyl tagging velocimetry in a supersonic flow over a cavity[J]. Applied Optics, 2005, 44(31):6692-6700. doi: 10.1364/AO.44.006692
    [77]
    ALEXANDER A, WEHRMEYER J, RUNGE W, et al. . Nonintrusive measurement of gas turbine exhaust velocity using hydroxyl tagging velocimetry[R]. AIAA, 2008: 3709.
    [78]
    PERKINS A N, RAMSEY M, PITZ R W, et al. . Investigation of a bow shock in a shock tube flow facility using hydroxyl tagging velocimetry(HTV)[R]. AIAA, 2011: 1092.
    [79]
    BARLOW S. Robert. Laser diagnostics and their interplay with computations to understand turbulent combustion[J]. Proceedings of the Combustion Institute, 2007, 31:49-75. doi: 10.1016/j.proci.2006.08.122
    [80]
    BOXX I, SLABAUGH C, KUTNE P, et al.. 3 kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure[J]. Proceedings of the Combustion Institute, 2015, 35:3793-3802. doi: 10.1016/j.proci.2014.06.090
    [81]
    KOTHNUR P S, TSURIKOV M S, CLEMENS N T, et al.. Planer imaging of CH, OH, and velocity in turbulent non-premixed jet flames[J]. Proceedings of the Combustion Institute, 2002, 29:1921-1927. doi: 10.1016/S1540-7489(02)80233-4
    [82]
    JOHCHI A, NAKA Y, SHIMURA M, et al.. Investigation on rapid consumption of? ne scale unburned mixture islands in turbulent flame via 10 kHz simultaneous CH OH PLIF and SPIV[J]. Proceedings of the Combustion Institute, 2015, 35:3663-3671. doi: 10.1016/j.proci.2014.09.007
    [83]
    SJOHOLMA J, ROSELL J, LI B, et al.. Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet fame with varying degrees of turbulence[J]. Proceedings of the Combustion Institute, 2013, 34:1475-1482. doi: 10.1016/j.proci.2012.05.037
    [84]
    LESIEUR M, M TAIS O. New trends in LES of turbulence[J]. Annu. Rev. Fluid Mech., 1996, 28:45-82. doi: 10.1146/annurev.fl.28.010196.000401
    [85]
    BROCKHINKE A, ANDRESEN P, KOHSE-HOINGHAUS K. Quantitative one dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/Air diffusion flame[J]. Appl. Phys. B, 1995, 61:533-545. doi: 10.1007/BF01091211
    [86]
    KOHSE-HOINGHAUSA K, BARLOWB R S, ALDEN M, et al... Combustion at the focus:laser diagnostics and control[J]. Proceedings of the Combustion Institute, 2005, 30:89-123. doi: 10.1016/j.proci.2004.08.274
    [87]
    NATHAN G J, KALT P A M, ALWAHABI Z T, et al.. Recent advances in the measurement of strongly radiating, turbulent reacting flows[J]. Prog. Energy Combust. Sci. 2012, 38:41-61. doi: 10.1016/j.pecs.2011.04.001
    [88]
    SUTTON J A, LEMPERT W R. Recent Advances in High-Energy, High-Repetition Rate Diagnostics for PLIF, Rayleigh and Raman Scattering Imaging in Turbulent Reacting Flows[R]. AIAA, 2011: 361.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(3457) PDF downloads(442) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return