Volume 13 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
YU Hai, WAN Qiu-hua, SUN Ying, LU Xin-ran, JIA Xing-dan. A high precision image angular displacement measurement device with self-adaptive installation[J]. Chinese Optics, 2020, 13(3): 510-516. doi: 10.3788/CO.2019-0107
Citation: YU Hai, WAN Qiu-hua, SUN Ying, LU Xin-ran, JIA Xing-dan. A high precision image angular displacement measurement device with self-adaptive installation[J]. Chinese Optics, 2020, 13(3): 510-516. doi: 10.3788/CO.2019-0107

A high precision image angular displacement measurement device with self-adaptive installation

doi: 10.3788/CO.2019-0107
Funds:  Supported by National Natural Science Foundation of China (No. 51605465); Science and Technology Development Programme of Jilin Province (No. 20180520184JH)
More Information
  • Corresponding author: yuhai@ciomp.ac.cn
  • Received Date: 17 May 2019
  • Rev Recd Date: 16 Jul 2019
  • Publish Date: 01 Jun 2020
  • The angular displacement measurement technology based on image detector is a hot research to realize high-precision and high-resolution angular displacement measurement. In order to improve the robustness of the angular displacement measuring devices, a high precision image displacement measurement device with self-adaptive installation techniques is designed in this paper. The installation and adjustment processes are very simple, and high resolution and high precision measurement output can be guaranteed in the presence of eccentricity in the calibration grating. Firstly, the angle measurement device using dual linear imaging sensors is proposed and a single-ring absolute grating is designed. Then, a high-resolution subdivision algorithm based on a centroid algorithm is used to subdivide the image, and dual linear image sensors are used to compensate for the angle measurement error. Finally, an experimental device is designed to test the performance of the adaptive installation. Experiments show that when the eccentricity of the grating is within ±1 mm, the designed device can achieve highly precise angular displacement measurements with high resolution. The device designed in this paper guarantee the output accuracy when the grating has an installation eccentricity of ±1 mm, which lays a foundation for improving the adaptability of small angular displacement measuring devices.

     

  • loading
  • [1]
    董莉莉, 熊经武, 万秋华. 光电轴角编码器的发展动态[J]. 光学 精密工程,2000,8(2):198-202.

    DONG L L, XIONG J W, WAN Q H. Development of photoelectric rotary encoders[J]. Optics and Precision Engineering, 2000, 8(2): 198-202. (in Chinese)
    [2]
    叶盛祥. 光电位移精密测量技术[M]. 乌鲁木齐: 新疆科技卫生出版社, 2003.

    YE SH X. Optoelectronic Displacement Precision Measurement Technology[M]. Urumqi: Xinjiang Science and Technology Health Press, 2003. (in Chinese)
    [3]
    熊经武, 万秋华. 二十三位绝对式光电轴角编码器[J]. 光学机械,1990(2):52-60.

    XIONG J W, WAN Q H. A 23-bit absolute photo-electric rotary encoder[J]. Optics and Precision Engineering, 1990(2): 52-60. (in Chinese)
    [4]
    LEVITON D B, FREY B. Ultra-high resolution, absolute position sensors for cryostatic applications[J]. Proceedings of SPIE, 2003, 4850: 776-787. doi: 10.1117/12.461799
    [5]
    LEVITON D B, GARZA M S. Recent advances and applications of NASA's new, ultrahigh-sensitivity absolute optical pattern recognition encoders[J]. Proceedings of SPIE, 2000, 4091: 375-384. doi: 10.1117/12.405797
    [6]
    BAJIĆ J S, STUPAR D Z, DAKIĆ B M, et al. An absolute rotary position sensor based on cylindrical coordinate color space transformation[J]. Sensors and Actuators A:Physical, 2014, 213: 27-34. doi: 10.1016/j.sna.2014.03.036
    [7]
    SUGIYAMA Y, MATSUI Y, TOYODA H, et al. A 3.2 kHz, 14-bit optical absolute rotary encoder with a CMOS profile sensor[J]. IEEE Sensors Journal, 2008, 8(8): 1430-1436. doi: 10.1109/JSEN.2008.920709
    [8]
    TRESANCHEZ M, PALLEJÀ T, TEIXIDÓ M, et al. Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder[J]. Sensors and Actuators A:Physical, 2010, 157(1): 161-167. doi: 10.1016/j.sna.2009.11.002
    [9]
    KIM J A, KIM J W, KANG C S, et al. Absolute angle measurement using a phase-encoded binary graduated disk[J]. Measurement, 2016, 80: 288-293. doi: 10.1016/j.measurement.2015.11.037
    [10]
    WANG Y N, YAUN B, NI X X. Subdivision technique of absolute angular encoder using array detector[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(2): 370-374.
    [11]
    齐荔荔, 万秋华. 图像式光电编码器的测角技术及其硬件实现[J]. 光学学报,2013,33(4):0412001. doi: 10.3788/AOS201333.0412001

    QI L L, WAN Q H. Angle-measurement technology of an optical pattern rotary encoder and its hardware implementation[J]. Acta Optica Sinica, 2013, 33(4): 0412001. (in Chinese) doi: 10.3788/AOS201333.0412001
    [12]
    YU H, WAN Q H, LU X R, et al. Small-size, high-resolution angular displacement measurement technology based on an imaging detector[J]. Applied Optics, 2017, 56(3): 755-760. doi: 10.1364/AO.56.000755
    [13]
    YU H, WAN Q H, LU X R, et al. A robust sub-pixel subdivision algorithm for image-type angular displacement measurement[J]. Optics and Lasers in Engineering, 2018, 100: 234-238. doi: 10.1016/j.optlaseng.2017.09.006
    [14]
    于海, 万秋华, 赵长海, 等. 图像式光电编码器高分辨力细分算法及误差分析[J]. 光学学报,2017,37(3):0312001. doi: 10.3788/AOS201737.0312001

    YU H, WAN Q H, ZHAO CH H, et al. A high-resolution subdivision algorithm for photographic encoders and its error analysis[J]. Acta Optica Sinica, 2017, 37(3): 0312001. (in Chinese) doi: 10.3788/AOS201737.0312001
    [15]
    赵长海, 万秋华, 孙莹. 光电轴角编码器的误码检测系统[J]. 电子测量与仪器学报,2012,26(5):463-468.

    ZHAO CH H, WAN Q H, SUN Y. Code error detection system for photoelectric shaft encoder[J]. Journal of Electronic Measurement and Instrument, 2012, 26(5): 463-468. (in Chinese)
    [16]
    于海, 万秋华, 梁立辉, 等. 光电编码器的动态误码检测系统[J]. 红外与激光工程,2016,45(9):0917001. doi: 10.3788/IRLA201645.0917001

    YU H, WAN Q H, LIANG L H, et al. Dynamic code error detection system of photoelectric encoder[J]. Infrared and Laser Engineering, 2016, 45(9): 0917001. (in Chinese) doi: 10.3788/IRLA201645.0917001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(1768) PDF downloads(68) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return