Volume 13 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
HUANG Le-hong, CAO Li-hua, LI Ning, LI Yi. A state perception method for infrared dim and small targets with deep learning[J]. Chinese Optics, 2020, 13(3): 527-536. doi: 10.3788/CO.2019-0120
Citation: HUANG Le-hong, CAO Li-hua, LI Ning, LI Yi. A state perception method for infrared dim and small targets with deep learning[J]. Chinese Optics, 2020, 13(3): 527-536. doi: 10.3788/CO.2019-0120

A state perception method for infrared dim and small targets with deep learning

Funds:  Supported by National Natural Science Foundation of China (No. 61705219)
More Information
  • Corresponding author: cao0983@sina.com
  • Received Date: 14 Jun 2019
  • Rev Recd Date: 12 Aug 2019
  • Publish Date: 01 Jun 2020
  • Aiming at the problems of low accuracy, high artificial interference and high data quality requirements of the current spatial infrared dim target state perception, a new deep learning-based discrimination algorithm is proposed. Firstly, the state change of weak spatial infrared dim target is analyzed and a special data set is established. Then, a convolutional neural network dedicated to target state perception is established and adjustments are made in its local annotations and adaptive threshold. Finally, simulation data is generated from the target's radiation intensity information that was collected in the laboratory and is used to train and test the algorithm. A target state perception evaluation indexing system is established to evaluate the experimental results. The experimental results show that the accuracy of this method is 98.27% when the continuous complete radiation intensity information is inputted. When the radiation intensity information of the segment is inputted, the accuracy of each state is greater than 90%. This algorithm makes up for the shortcomings of current methods, which are not sensitive to low false alarm rates and incomplete target information. It improves detection speed and accuracy and better satisfies the demand for spatial infrared weak target sensing tasks.

     

  • loading
  • [1]
    王建立, 刘欣悦. 智能光学的概念及发展[J]. 中国光学,2013,6(4):437-488.

    WANG J L, LIU X Y. Concept and development of smart optics[J]. Chinese Optics, 2013, 6(4): 437-488. (in Chinese)
    [2]
    李宁, 张云峰, 刘春香, 等. 1 m口径红外测量系统的辐射定标[J]. 光学 精密工程,2014,22(8):2054-2060. doi: 10.3788/OPE.20142208.2054

    LI N, ZHANG Y F, LIU CH X, et al. Calibration of 1 m aperture infrared theodolite[J]. Optics and Precision Engineering, 2014, 22(8): 2054-2060. (in Chinese) doi: 10.3788/OPE.20142208.2054
    [3]
    许伟琳, 武春风, 逯力红, 等. 基于光谱角时序不变性的红外目标识别[J]. 中国光学,2012,5(3):257-262.

    XU W L, WU CH F, LU L H, et al. IR target recognition based on invariant sequential spectral angle[J]. Chinese Optics, 2012, 5(3): 257-262. (in Chinese)
    [4]
    李宁, 杨词银, 曹立华, 等. 3~5 μm红外焦平面阵列的辐射定标[J]. 光学 精密工程,2011,19(10):2319-2325. doi: 10.3788/OPE.20111910.2319

    LI N, YANG C Y, CAO L H, et al. Radiance calibration for 3~5 μm infrared focal plane array[J]. Optics and Precision Engineering, 2011, 19(10): 2319-2325. (in Chinese) doi: 10.3788/OPE.20111910.2319
    [5]
    梁华, 宋玉龙, 钱锋, 等. 基于深度学习的航空对地小目标检测[J]. 液晶与显示,2018,33(9):793-800.

    LIANG H, SONG Y L, QIAN F, et al. Detection of small target in aerial photography based on deep learning[J]. Chinese Journal of Liquid Crystal and Displays, 2018, 33(9): 793-800. (in Chinese)
    [6]
    陈清江, 张雪, 柴昱洲. 基于卷积神经网络的图像去雾算法[J]. 液晶与显示,2019,34(2):220-227.

    CHEN Q J, ZHANG X, CHAI Y ZH. Image defogging algorithms based on multiscale convolution neural network[J]. Chinese Journal of Liquid Crystal and Displays, 2019, 34(2): 220-227. (in Chinese)
    [7]
    周筑博, 高佼, 张巍, 等. 基于深度卷积神经网络的输电线路可见光图像目标检测[J]. 液晶与显示,2018,33(4):317-325.

    ZHOU ZH B, GAO J, ZHANG W, et al. Object detection of transmission line visual images based on deep convolutional neural network[J]. Chinese Journal of Liquid Crystal and Displays, 2018, 33(4): 317-325. (in Chinese)
    [8]
    张博, 韩广良. 基于Mask R-CNN的ORB去误匹配方法[J]. 液晶与显示,2018,33(8):690-696.

    ZHANG B, HAN G L. ORB removal mis-matching method based on Mask R-CNN[J]. Chinese Journal of Liquid Crystal and Displays, 2018, 33(8): 690-696. (in Chinese)
    [9]
    贠卫国, 史其琦, 王民. 基于深度卷积神经网络的多特征融合的手势识别[J]. 液晶与显示,2019,34(4):417-422.

    YUN W G, SHI Q Q, WANG M. Multi-feature fusion gesture recognition based on deep convolutional neural network[J]. Chinese Journal of Liquid Crystal and Displays, 2019, 34(4): 417-422. (in Chinese)
    [10]
    HARE S, GOLODETZ S, SAFFARI A, et al. Struck: structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109. doi: 10.1109/TPAMI.2015.2509974
    [11]
    UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. doi: 10.1007/s11263-013-0620-5
    [12]
    纪超, 黄新波, 刘慧英, 等. 融合连续区域特性和背景学习模型的显著计算[J]. 模式识别与人工智能,2018,31(4):300-309.

    JI CH, HUANG X B, LIU H Y, et al. Fusing continuous region characteristics and background learning model for saliency computation[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(4): 300-309. (in Chinese)
    [13]
    辛鹏, 许悦雷, 唐红, 等. 全卷积网络多层特征融合的飞机快速检测[J]. 光学学报,2018,38(3):0315003. doi: 10.3788/AOS201838.0315003

    XIN P, XU Y L, TANG H, et al. Fast airplane detection based on multi-layer feature fusion of fully convolutional networks[J]. Acta Optica Sinica, 2018, 38(3): 0315003. (in Chinese) doi: 10.3788/AOS201838.0315003
    [14]
    冯小雨, 梅卫, 胡大帅. 基于改进Faster R-CNN的空中目标检测[J]. 光学学报,2018,38(6):0615004. doi: 10.3788/AOS201838.0615004

    FENG X Y, MEI W, HU D SH. Aerial target detection based on improved faster R-CNN[J]. Acta Optica Sinica, 2018, 38(6): 0615004. (in Chinese) doi: 10.3788/AOS201838.0615004
    [15]
    廖祥文, 谢媛媛, 魏晶晶, 等. 基于卷积记忆网络的视角级微博情感分类[J]. 模式识别与人工智能,2018,31(3):219-229.

    LIAO X W, XIE Y Y, WEI J J, et al. Perspective level microblog sentiment classification based on convolutional memory network[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(3): 219-229. (in Chinese)
    [16]
    王文秀, 傅雨田, 董峰, 等. 基于深度卷积神经网络的红外船只目标检测方法[J]. 光学学报,2018,38(7):0712006. doi: 10.3788/AOS201838.0712006

    WANG W X, FU Y T, DONG F, et al. Infrared ship target detection method based on deep convolution neural network[J]. Acta Optica Sinica, 2018, 38(7): 0712006. (in Chinese) doi: 10.3788/AOS201838.0712006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views(2608) PDF downloads(173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return