Volume 13 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
GAO Yue-juan, CHEN Fei, PAN Qi-kun, YU Hang-hang, LI Hong-chao, TIAN You-peng. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2 laser[J]. Chinese Optics, 2020, 13(3): 577-585. doi: 10.3788/CO.2019-0159
Citation: GAO Yue-juan, CHEN Fei, PAN Qi-kun, YU Hang-hang, LI Hong-chao, TIAN You-peng. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2 laser[J]. Chinese Optics, 2020, 13(3): 577-585. doi: 10.3788/CO.2019-0159

Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2 laser

Funds:  Supported by National Natural Science Foundation of China(No. 61675200); National Science and Technology Major Project 02(No. 2018ZX02102001-002); Open Fund Project of the State Key Laboratory of Laser and Material Interaction (No. SKLLIM1611); Youth Innovation Promotion Association (No. 2017259)
More Information
  • Corresponding author: feichenny@126.com
  • Received Date: 25 Jul 2019
  • Rev Recd Date: 30 Aug 2019
  • Publish Date: 01 Jun 2020
  • The physical mechanism are studied for ultra-short pulse CO2 laser output realized by semiconductor switching technology. Firstly, based on the analysis of the generation, recombination and diffusion mechanism of laser-produced carriers, we introduce direct absorption, Auger recombination, plasmon-assisted recombination, an ambipolar diffusion process and according to Drude theory, we improve the theoretical model of semiconductor switching. Secondly, we simulate and analyze the generation of ultra-short CO2 pulses by two-stage semiconductor optical switches employing this model. The results show that the model is in good agreement with the latest experimental results reported abroad, which implies the rationality and correctness of the model. Finally, the model is used to analyze the effect of control pulse duration on the efficiency of the two-stage switching. It is found that a short control pulse is more conducive to intercepting high-quality ultra-short CO2 pulses accurately and efficiently. Semiconductor switching is an effective technique to realize the output of an ultra-short CO2 laser with an adjustable pulse width.

     

  • loading
  • [1]
    POGORELSKY I V, YAKIMENKO V, POLYANSKIY M, et al. Ultrafast CO2 laser technology: application in ion acceleration[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 6(20): 67-70.
    [2]
    PIGEON J J, TOCHITSKY S Y, GONG C, et al. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses[J]. Optics Letters, 2014, 39(11): 3246-3249. doi: 10.1364/OL.39.003246
    [3]
    BABZIEN M, POGORELSKY I V, POLYANSKIY M. Design and applications of the Brookhaven 100 TW CO2 laser[C]. Research in Optical Sciences, OSA, 2014: JW2A.25.
    [4]
    SIEMON C, KHUDIK V, AUSTIN Y S, et al. Laser-seeded modulation instability in a proton driver plasma wake field accelerator[J]. Physics of Plasmas, 2013, 20(10): 103111. doi: 10.1063/1.4825245
    [5]
    KESSELRING R, KALIN A W, SCHOTZAU H J, et al. Picosecond CO2 laser-pulse generation and amplification[J]. IEEE Journal of Quantum Electronics, 1993, 29(3): 997-1005. doi: 10.1109/3.206584
    [6]
    HABERBERGER D, TOCHITSKY S, JOSHI C. Fifteen terawatt picosecond CO2 laser system[J]. Optics Express, 2010, 18(17): 17865-17875. doi: 10.1364/OE.18.017865
    [7]
    谢冀江, 李殿军, 张传胜, 等. 声光调Q CO2激光器[J]. 光学 精密工程,2009,17(5):1008-1013.

    XIE J J, LI D J, ZHANG CH SH, et al. Acousto-optically Q-switched CO2 laser[J]. Optics and Precision Engineering, 2009, 17(5): 1008-1013. (in Chinese)
    [8]
    ALCOCK A J, CORKUM P B, JAMES D J. A fast scalable switching technique for high-power CO2 laser radiation[J]. Applied Physics Letters, 1975, 27(12): 680-682. doi: 10.1063/1.88336
    [9]
    POGORELSKY I V, BEN-ZVI I, BABZIEN M, et al. First picosecond terawatt CO2 laser[J]. Proceedings of SPIE, 1998, 3683: 15-24. doi: 10.1117/12.334820
    [10]
    APOLLONOV V V, KAZAKOV K K, PLETNYEV N V, et al. Picosecond terawatt CO2 laser system: picasso-2[J]. Proceedings of SPIE, 2003, 5120: 291-296.
    [11]
    JAMISON S A, NURMIKKO A V, GERRITSEN H J. Fast transient spectroscopy of the free-carrier plasma edge in Ge[J]. Applied Physics Letters, 1976, 29(10): 640-643. doi: 10.1063/1.88908
    [12]
    HEIN P C, GALLANT M I, VAN DRIEL H M. Influence of excitation wavelength on the reflectivity of photogenerated plasmas in germanium[J]. Solid State Communications, 1981, 39(4): 601-604. doi: 10.1016/0038-1098(81)90330-6
    [13]
    GALLANT M I, VAN DRIEL H M. Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium[J]. Physical Review B, 1982, 26(4): 2133-2146. doi: 10.1103/PhysRevB.26.2133
    [14]
    ALCOCK A J, CORKUM P B. Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors[J]. Canadian Journal of Physics, 1979, 57(9): 1280-1290. doi: 10.1139/p79-176
    [15]
    董文甫, 王启明, 杨沁清, 等. 锗硅量子阱中近带边光跃迁的理论和实验研究[J]. 发光学报,1996,17(4):311-316. doi: 10.3321/j.issn:1000-7032.1996.04.004

    DONG W F, WANG Q M, YANG Q Q, et al. The theoretical and experimental research of the near-band-gap optical transition in SiGe/Si quantum well[J]. Chinese Journal of Luminescence, 1996, 17(4): 311-316. (in Chinese) doi: 10.3321/j.issn:1000-7032.1996.04.004
    [16]
    张希清, 秦伟平, 赵家龙, 等. 用非相干光时间延迟四波混频测量TiO2超微粒子的扩散系数及载流子复合时间[J]. 发光学报,1993,14(3):231-236. doi: 10.3321/j.issn:1000-7032.1993.03.004

    ZHANG X Q, QIN W P, ZHAO J L, et al. Measuring carrier recombination time and diffusion coefficient of TiO2 using time-delayed four-wave mixing with incoherent light[J]. Chinese Journal of Luminescence, 1993, 14(3): 231-236. (in Chinese) doi: 10.3321/j.issn:1000-7032.1993.03.004
    [17]
    ELCI A, SCULLY M O, SMIRL A L, et al. Ultrafast transient response of solid-state plasmas. I. Germanium, theory, and experiment[J]. Physical Review B, 1977, 16(1): 191-221. doi: 10.1103/PhysRevB.16.191
    [18]
    刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版社, 2008.

    LIU E K, ZHU B SH, LUO J SH. Semiconductor Physics[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2008. (in Chinese)
    [19]
    ZIMAN J M. Principles of the Theory of Solids[M]. Cambridge: Cambridge University Press, 1972.
    [20]
    MALVEZZI A M, HUANG C Y, KURZ H, et al. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium[J]. MRS Proceedings, 1985, 51: 201. doi: 10.1557/PROC-51-201
    [21]
    AUSTON D H, SHANK C V, LEFUR P. Picosecond optical measurements of band-to-band Auger recombination of high-density plasmas in germanium[J]. Physical Review Letters, 1975, 35(15): 1022-1025. doi: 10.1103/PhysRevLett.35.1022
    [22]
    米宝永. 锗的红外折射率精密测量[J]. 光学 精密工程,1998,6(4):123-126.

    MI B Y. Precision measurement of the infrared refractive index for germanium sample[J]. Optics and Precision Engineering, 1998, 6(4): 123-126. (in Chinese)
    [23]
    RASOLT M, MALVEZZI A M, KURZ H. Plasmon-phonon-assisted electron-hole recombination in silicon at high laser fluence[J]. Applied Physics Letters, 1987, 51(26): 2208-2210. doi: 10.1063/1.98942
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(3204) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return