Volume 13 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
WU Wen-da, ZHANG Bao, HONG Yong-feng, ZHANG Yu-xin. Design of co-aperture antenna for airborne infrared and synthetic aperture radar[J]. Chinese Optics, 2020, 13(3): 595-604. doi: 10.3788/CO.2019-0160
Citation: WU Wen-da, ZHANG Bao, HONG Yong-feng, ZHANG Yu-xin. Design of co-aperture antenna for airborne infrared and synthetic aperture radar[J]. Chinese Optics, 2020, 13(3): 595-604. doi: 10.3788/CO.2019-0160

Design of co-aperture antenna for airborne infrared and synthetic aperture radar

Funds:  Supported by National Natural Science Foundation of China (Grant No.61705225)
More Information
  • Corresponding author: cleresky@vip.sina.com
  • Received Date: 26 Jul 2019
  • Rev Recd Date: 13 Aug 2019
  • Publish Date: 01 Jun 2020
  • In order to adapt to increasingly complex detection environments and detection requirements, airborne detection platforms often integrate multiple detection systems. As an ideal integration method, the common aperture composite not only combines the advantages of various types of detection systems, but also reduces the total volume of the system and reduces the burden on the platform. In this paper, a Cassegrain-type common-aperture antenna of infrared and Synthetic Aperture Radars (SAR) is calculated and designed. Firstly, the primary mirror is calculated according to the radar design requirements; then, the Cassegrain structure is designed by equations consisting of aberration coefficients and aspheric parameters; next, under the limitation of the front Cassegrain structure, the cold stop parameters and infrared system parameters, the lens parameters of the infrared system are calculated by the aberration formula in PW form. The proposed radar antenna has a diameter of 1.22 m and a gain of 40.9 dB. The infrared system has a focal length of −1 000 mm and a full field of view of 0.704°. The obscuration ratio of the secondary mirror is less than 0.33, and the MTF value is greater than 0.4 for each temperature level at 33 lp/mm. All the parameters of the proposed co-aperture antenna meet the requirements of expected applications.

     

  • loading
  • [1]
    夏团结, 申涛, 方珉, 等. 红外成像/被动微波复合制导技术研究[J]. 红外技术,2018,40(5):481-486.

    XIA T J, SHEN T, FANG M, et al. Composite guidance technology research on passive microwave for infrared imaging[J]. Infrared Technology, 2018, 40(5): 481-486. (in Chinese)
    [2]
    磨国瑞, 张江华, 李超, 等. 毫米波雷达/红外成像复合制导技术研究[J]. 火控雷达技术,2018,47(1):1-5. doi: 10.3969/j.issn.1008-8652.2018.01.001

    MO G R, ZHANG J H, LI CH, et al. Study on millimeter wave radar/infrared imaging compound guidance technology[J]. Fire Control Radar Technology, 2018, 47(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1008-8652.2018.01.001
    [3]
    WU Y Q, WANG ZH L. SAR and infrared image fusion in complex contourlet domain based on joint sparse representation[J]. Journal of Radars, 2017, 6(4): 349-358.
    [4]
    CHARLES J R, HOPPE D J, SEHIC A. Hybrid RF/optical communication terminal with spherical primary optics for optical reception[C]. Proceedings of 2011 International Conference on Space Optical Systems and Applications, IEEE, 2011: 171-179.
    [5]
    钱坤, 刘家国, 李婷, 等. 毫米波/激光/红外共口径复合光学系统设计[J]. 现代防御技术,2019,47(2):61-65, 79. doi: 10.3969/j.issn.1009-086x.2019.02.11

    QIAN K, LIU J G, LI T, et al. Design of a millimeter wave/laser/infrared common aperture compound optical system[J]. Modern Defence Technology, 2019, 47(2): 61-65, 79. (in Chinese) doi: 10.3969/j.issn.1009-086x.2019.02.11
    [6]
    卢政伟, 邵帅, 马亚坤. 复合式无遮拦激光扩束器的设计[J]. 中国光学,2018,11(4):582-589. doi: 10.3788/co.20181104.0582

    LU ZH W, SHAO SH, MA Y K. Design of a composite laser beam expander without obscuration[J]. Chinese Optics, 2018, 11(4): 582-589. (in Chinese) doi: 10.3788/co.20181104.0582
    [7]
    BRUSGARD T C, MCCORMICK T C, SIJGERS H K, et al.. Millimeter wave and infrared sensor in a common receiving aperture: United States, US5214438[P]. 1993-05-25.
    [8]
    张瑞, 祖成奎. 玻璃的光学透过与调控[J]. 硅酸盐通报,2017,36(S1):122-137.

    ZHANG R, ZU CH K. Optical transmission and control of glass[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(S1): 122-137. (in Chinese)
    [9]
    江东亮. 透明陶瓷——无机材料研究与发展重要方向之一[J]. 无机材料学报,2009,24(5):873-881. doi: 10.3724/SP.J.1077.2009.00873

    JIANG D L. Transparent ceramics: one of the most important field of research and development of inorganic materials[J]. Journal of Inorganic Materials, 2009, 24(5): 873-881. (in Chinese) doi: 10.3724/SP.J.1077.2009.00873
    [10]
    刘立业, 柴舜连, 毛钧杰. 红外/毫米波导弹头罩材料的特性研究[J]. 飞航导弹,2001(1):57-59, 63. doi: 10.3969/j.issn.1009-1319.2001.01.015

    LIU L Y, CHAI SH L, MAO J J. Study on characteristics of infrared/millimeter wave missile head cover materials[J]. Winged Missiles Journal, 2001(1): 57-59, 63. (in Chinese) doi: 10.3969/j.issn.1009-1319.2001.01.015
    [11]
    朱华新, 冯晓国, 赵晶丽, 等. ZnS光窗上增透与带通频率选择表面组合膜设计[J]. 光学学报,2010,30(9):2766-2770. doi: 10.3788/AOS20103009.2766

    ZHU H X, FENG X G, ZHAO J L, et al. Design of antireflection and band-pass frequency selective surface combining coatings for ZnS optical window[J]. Acta Optica Sinica, 2010, 30(9): 2766-2770. (in Chinese) doi: 10.3788/AOS20103009.2766
    [12]
    许戎戎. 基于集总元件加载和分形结构的多频频率选择表面研究[D]. 南京: 南京理工大学, 2009.

    XU R R. Study on multi-band frequency selective surfaces based on lumped element loadings and fractal structure[D]. Nanjing: Nanjing University of Science and Technology, 2009. (in Chinese)
    [13]
    康行健.天线原理与设计[M]. 北京: 北京理工大学出版社, 1993.

    KANG X J. Antenna Principle and Design[M]. Beijing: Beijing Institute of Technology Press, 1993. (in Chinese)
    [14]
    鲁加国.合成孔径雷达设计技术[M]. 北京: 国防工业出版社, 2017.

    LU J G. Design Technology of Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017. (in Chinese)
    [15]
    潘君骅.光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

    PAN J Y. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004. (in Chinese)
    [16]
    王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学,2018,11(1):92-99.

    WANG Q, LIANG J Q, LIANG ZH ZH, et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Optics, 2018, 11(1): 92-99. (in Chinese)
    [17]
    张以谟. 应用光学[M]. 北京: 机械工业出版社, 1982.

    ZHANG Y M. Applied Optics[M]. Beijing: China Machine Press, 1982. (in Chinese)
    [18]
    李航. 中波红外目标探测装置关键技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    LI H. Research on key techniques for medium wave infrared target detection device[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017. (in Chinese)
    [19]
    史光辉. 用高斯光学和三级像差理论求变焦距物镜的初始解[J]. 中国光学,2018,11(6):1047-1060. doi: 10.3788/co.20181106.1047

    SHI G H. Find preliminary solution of zoom objective lens using Gaussian optics and third-order aberration theory[J]. Chinese Optics, 2018, 11(6): 1047-1060. (in Chinese) doi: 10.3788/co.20181106.1047
    [20]
    沈宏海, 王国华, 丁金伟, 等. 主动补偿无热化技术在机载红外光学系统中的应用[J]. 光学精密工程,2010,18(3):593-601.

    SHEN H H, WANG G H, DING J W, et al. Application of active-athermal compensation to airborne IR optical systems[J]. Optics and Precision Engineering, 2010, 18(3): 593-601. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views(3199) PDF downloads(214) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return