
Citation: | SONG Dong-sheng, ZHENG Yuan-lin, LIU Hu, HU Wei-xing, ZHANG Zhi-yun, CHEN Xian-feng. Eigen generalized Jones matrix method[J]. Chinese Optics, 2020, 13(3): 637-645. doi: 10.3788/CO.2019-0163 |
Jones calculus is a simple and general method for modelling several optical phenomena, such as those of liquid crystal displays[1-2], diffraction gratings[3], Šolc filters[4-6], holographic imaging[7-8], quantum communication [9] in classical and quantum optical fields, radio telescope image calibrators[10], radio polarimeters[11] in astronomical observation, human retinal imaging [12], human brain tissues[13], and biological specimens[14] in the biomedical imaging. Moreover, when applied in three dimensions, the Jones vector changes into the generalized Jones vector[15] and can be used to describe light propagating through a high-numerical-aperture focus lens[16], light interacting with nanoparticles[17], and optical coherence tomography[18].
Jones matrix calculus was first proposed by R. Clark Jones in the 1940s to describe the change in phase and polarization in a matrix or in vector forms for media or light[19]. It is a basic and widely used calculation method for describing the polarization of light transmitting in media. However, it has only been applied to normally or paraxially incident light. Zhang et al. introduced a Generalized Jones Vector (GJV), also called a 3D Jones vector to describe the polarization effect of light and optical media or systems[20-24]. Yeh et al. extended the method to treat the transmission of off-axis light through an anisotropic medium with an arbitrary optical axis orientation[25]. Azzam et al. invented the Generalized Jones Matrix (GJM) to describe the interaction between the fully polarized beam and its linear transformations in three dimensions[26]. Recently, Ortega-Quijano and colleagues proposed the differential Generalized Jones Matrix (dGJM) method to derive the GJM to model uniaxial and biaxial crystals with arbitrary orientations[27-28]. However, our repeated and precise calculations showed that the dGJM method is not applicable to samples with an arbitrary optical axis orientation or when the light is obliquely incident. The reason for this limitation is that the dGJM method tries to get the GJM of an arbitrarily oriented anisotropic crystal in the laboratory coordinate system through the rotation of the GJM consisting of the principle index in principle coordinate system. However, when the light has oblique incidence, the principle index should be replaced by the eigen refraction index, which can be calculated with the n-face equation of the crystal and the direction of the beam in the principle coordinate. Meanwhile, the eigen refraction index can be used to calculate the phase difference of the two eigen polarization lights.
In this paper, we propose a new method for calculating the phase and polarization of fully polarized light propagating in an arbitrarily oriented anisotropic crystal. The method overcomes the limitations of the dGJM method. In Sec. 2, an eigen Generalized Jones Matrix (eGJM) is derived that can be used in uniaxial and biaxial crystals. In Sec. 3, the eGJM is extended to describe the light refraction in the crystal interface. Then, we use the proposed method to simulate the polarization distribution of the cross-section for a light beam with a vortex and compare the results to an image obtained in an experiment[29-30]. The results demonstrate that our method is effective.
To overcome the limitations of the dGJM method, three coordinate systems are necessary: the laboratory coordinate system (S), which describes the position of the crystal; the principal axis coordinate system (Z), which describes the orientation of the optical axis; and the eigen coordinate system (B), which describes the direction of the polarized beam's. In addition, only one eigen coordinate system is required when the light beam transfers in the crystal without any refraction and that only two eigen coordinate systems are required for the two different wave vectors. These coordinates are illustrated in Fig. 1 (color online).
We define the rotation relationship between them as Z=TZS and B=TBS, where TZ and TB are the rotation matrices, which can be calculated using Euler rotation matrix theory.
To obtain the eigen dGJM, we first calculate the eigen indices n1 and n2 from Eq. (1) and Eq. (2) using the principal coordinates:
Ki=TZk, | (1) |
n4(Kix2+Kiy2+Kiz2)(Kix2nx2+Kiy2ny2+Kiz2nz2)−n2Kix2nx2(ny2+nz2)−n2Kiy2ny2(nz2+nx2)−n2Kiz2nz2(nx2+ny2)+nx2ny2nz2=0, | (2) |
where n is the refractive index, Ki is the principal wave vector, and nx, ny and nz are the principal indices of the crystal. Eq. (1) is used to rewrite the transporting direction of the eigen light beam in Z, which can directly be used in Eq. (2) and the index face equation in Z.
Second, we can directly write the eGJM in B:
GB=[exp(−iδ/2)000exp(iδ/2)0000], | (3) |
where δ=2π(n1d1−n2d2)/λ describes the phase difference. d1 and d2 are the propagation path lengths of the wave vector for the two eigen lights in the crystal. They must be calculated with different refractions at oblique incidents and identical refrations at normal incidents.
According to the relationship between B and S, the GJM in S is
GS=T−1BGBTB, | (4) |
where TB is the transfer matrix between the eigen coordinates and laboratory coordinates. The electric displacement vector D′ of the output light beam can be expressed as
D′=GSDi=T−1BGBTBDi. | (5) |
The electric field vector E′ can be expressed as
E′=(T−1ZεZTZ)−1T−1BGBTB(T−1ZεZTZ)Ei, | (6) |
where TZ is the transfer matrix between the principal coordinates and laboratory coordinates and εZ is the polarizability tensor in principal coordinates and can be written as
εZ=[nxnynz]. | (7) |
The physical meaning of Eq. (6) is easily understood. Ei represents the electric field vector of a light beam in laboratory coordinates and will be transferred to the electric displacement vector D in the same coordinates by the left multiplication of the factor (TZ−1εZTZ). Then, TB will convert D to eigen coordinates. GB will change the phase of light, which will finally be reversed to an electric field vector form in laboratory coordinates.
We use the eGJM method to calculate the polarization distribution of the light beam in anisotropic crystals.
(1) Beam direction perpendicular to the optical axis
Consider a situation where the direction of the beam is perpendicular to the optical axis. The principal coordinate system is then in the superposition of the eigen coordinate system; thus, TB=TZ. The refractive indices for the eigen beams are exactly the same as the principal index, no and ne. Here, the eGJM is
GS=(TZ−1εZTZ)−1TBu1−1GBTB(TZ−1εZTZ)=TZ−1εZ−1GBu1εZTZ, | (8) |
where
GBu1=[exp(−iδ/2)000exp(iδ/2)0000],δ=2π(no−ne)d/λ. | (9) |
In this case, there is no walk-off angle between the two eigen beams. Assuming the initial polarization direction is 45° from the x-axis, according to the eGJM method, we can calculate the polarization after a length d. The polarization distribution of the cross-section of the beam is presented in Fig. 2, which shows the change in polarization from the original direction to the opposite polarization direction.
(2) Arbitrary angle between the beam and optical axis
When the angle between the beam and optical axis is arbitrary, the eigen refractive indices for the extraordinary ray will no longer be ne, but they should be calculated from Eq. (10)[30].
ne(θ)=none[n2osin2θ+n2ecos2θ]1/2. | (10) |
Then, the eGJM for the electric displacement vector D is
GSD=(TZ−1εZTZ)−1(T−1BGBu2TB)(TZ−1εZTZ), | (11) |
where
GBu2=[exp(−iδ′/2)000exp(iδ′/2)0000],δ′=2π(no−neθ)d/λ. | (12) |
For the extraordinary beam, the array direction is not the same as the wave vector direction, so the eGJM for the electric field vector E should be changed to
GSE=(TZ−1εZTZ)−1(T−1BoGBoTBo+T−1BeGBeTBe)(TZ−1εZTZ), | (13) |
where
GBo=[exp(−iδ1)00000000],δ1=2πnod1/λ, | (14) |
GBe=[0000exp(−iδ2)0000],δ2=2πneθd2/λ. | (15) |
The walk-off angle should be calculated before we obtain the polarization distribution of the cross-section of the beam. For a potassium dideuterium phosphate (KDDP) crystal, no=1.494 2, ne=1.460 3. The change in walk-off angle with θz from 0 to π/2 is shown in Fig. 3, where the angle between the beam direction and optical axis direction is θz.
Figure 3 indicates that the maximum value of the walk-off angle is 0.023 3 rad, equal to 1.335°, and the corresponding refractive index is ne(θ)=1.476 96. The walk-off distance is 0.023 3 cm if the beam transfers a distance of 1 cm. Thus, there will be an overlapping region if the size of the beam cross-section is larger than 0.023 3 cm. The polarization distribution for the overlapping region is presented in Fig. 4. The light polarization for the overlapping region could be elliptical, circular, or linear. Meanwhile, the overlapping region decreases in size with the transfer length.
In biaxial crystals, there is always a walk-off effect for the light beam so the transmission of light is in the direction of the optical axis and its conical refraction effect is not considered a special situation. The eigen refractive indices for the two eigen linear polarization light beams can be calculated from Eq. (1) and Eq. (2). The eGJM for the electric field vector can immediately be written as
GSE=(TZ−1εZTZ)−1(T−1B1GB1TB1+T−1B2GB2TB2)(TZ−1εZTZ), | (16) |
where
GB1=[exp(−iδ′1)00000000],δ′1=2πn1d1/λ, | (17) |
GB2=[0000exp(−iδ′2)0000],δ′2=2πn2d2/λ. | (18) |
The eGJM for the electric displacement vector can be written as
GSD=(TZ−1εZTZ)−1(T−1BGBbTB)(TZ−1εZTZ), | (19) |
where
GBb=[exp(−iδ″/2)000exp(iδ″/2)0000],δ″=2π(n1−n2)d/λ. | (20) |
To calculate the polarization distribution of the cross-section of the light beam, we also need to calculate the walk-off angle. We define the light direction as (θ, φ) in principal coordinates, and the change in walk-off angle is shown in Fig. 5 (Color online).
In Fig 5 θ is the polar angle and φ is the azimuth angle. Figures 5(a) and 5(b) are related to the walk-off angle for the light beam with the smaller and larger eigen refractive indices, respectively. There is no walk-off effect for any eigen light when the light beam transmits in the direction of the axis, corresponding to θ=0, or θ=π/2 and φ is 0, π/2, π, 3π/2. Only one eigen light beam exhibits a walk-off effect when φ is 0, π/2, π, 3π/2 while θ is arbitrary, or when θ=π/2 while φ is arbitrary. There are two singularity points when θ=0.304 and φ is 0, π, corresponding to the optical axis direction. Similar to the uniaxial crystal, the polarization distribution of the cross-section of the light beam is presented in Fig. 6 (Color online). The movement of the different polarizations toward the upper-right quarter represents the array direction.
We extend the eGJM to a more general case of refraction on the interface. Figure 7(a) (Color online) shows the phase difference when the light beam transfers through the anisotropic crystals, where the blue line represents ordinary light, the red line represents the direction of the energy flow of the extraordinary light, and the pink line represents the wave vector direction. We now calculate the phase difference:
δe−δo=ne⋅d/cosθe+n⋅EF⋅tanθi−no⋅d/cosθo=(necosθe−nocosθo)d, | (21) |
δs−δo=ne⋅dcos(θe−θs)/cosθs+n⋅AF⋅tanθi−no⋅d/cosθo=(necosθe−nocosθo)d. | (22) |
The results indicate that the two phase changes are identical. They are equivalent to either the energy flow direction or the wave vector direction of the extraordinary light. Figure 7(b) shows the different polarization directions at the interface. For the anisotropic crystal, the birefringence must be considered. Yeh[24] already provided a method to calculate the polarization of the output light beam. Assuming the thickness of the crystal is d, we know the optical distance difference is (necosθe−nocosθo) from Eq. (21) and Eq. (22); thus, the output light beam can be expressed as
A′s=(tosToe−iδ1/2+tesTeeiδ1/2)e−iδ2/2A′p=(tpsToe−iδ1/2+tpsTeeiδ1/2)e−iδ2/2, | (23) |
where δ1=(necosθe−nocosθo)dω/c and δ2=(ne/cosθe+no/cosθo)dω/c. Ignoring the phase factor
(A′sA′p)=(tostestoptep)(e−iδ1/200eiδ1/2)(tsotpotsetpe)(AsAp). | (24) |
If we extend Eq. (24) to three dimensions, we have
(E′xE′yE′z)=T(A′sA′p0)=T(tostes0toptep0000)⋅(e−iδ1/2000eiδ1/20000)(tsotpo0tsetpe0000)T−1T(AsAp0)=GS(ExEyEz). | (25) |
In applications, we calculate the phase distribution for a vector vortex light beam with a singularity transference through the KDP crystal and compare the simulation results to the experimental results of Flossmann[28], as shown in Fig. 8 (Color online).
The black squares indicate the singularities of the light beam. The colored circles represent the circular polarization state points and the yellow lines represent the linear polarization states in the cross-section of the output vector beam. There is a small difference in the bottom and middle areas between these two images because of experimental error and simulation method. However, the polarization distribution and positions of the special points are almost identical, which clearly indicates that the eGJM method is practical.
In this study, we analyzed the GJM method, which provides a convenient way to establish the Jones matrix for anisotropic crystals whose optical axis is oriented arbitrarily in three-dimensional space. We proposed the eGJM method to overcome the limitation of the dGJM, which is effective only when the light has perpendicular incidence and the optical axis is perpendicular or parallel to the incidence face. The calculation results indicate that our method can be used to construct the Jones matrix when the directions of the light beam and optical axis are both arbitrary. The eGJM can also be extended to include cases where the light refraction is on the interface when light travels through the crystal, so that its polarization and phase can be precisely calculated. Finally, we use this method to simulate the polarization distribution of the cross-section for a fully polarized light beam with a vortex transmitting through an anisotropic crystal, and we compare the results to those of an experiment. The results demonstrate that our method is effective. Thus, the eGJM method has potential applications in simulating the space evolution of vector beams. Optional optical crystal instruments can be calculated based on the requirement beams. Factors like the electro-photon effect, magnetic-photon effect and optical rotation should be further studied to fully develop the eGJM method for applications like light propagation in crystals in electromagnetic fields.
[1] |
YU F H, KWOK H S. Comparison of extended Jones matrices for twisted nematic liquid-crystal displays at oblique angles of incidence[J]. Journal of the Optical Society of America A, 1999, 16(11): 2772-2780. doi: 10.1364/JOSAA.16.002772
|
[2] |
LIEN A, CHEN C J. A new 2× 2 matrix representation for twisted nematic liquid crystal displays at oblique incidence[J]. Japanese Journal of Applied Physics, 1996, 35(9B): L1200-L1203.
|
[3] |
AZZAM R M A, BASHARA N M. Generalized ellipsometry for surfaces with directional preference: application to diffraction gratings[J]. Journal of the Optical Society of America, 1972, 62(12): 1521-1523. doi: 10.1364/JOSA.62.001521
|
[4] |
CHEN X F, SHI J H, CHEN Y P, et al. Electro-optic Solc-type wavelength filter in periodically poled lithium niobate[J]. Optics Letters, 2003, 28(21): 2115-2117. doi: 10.1364/OL.28.002115
|
[5] |
CHEN L J, SHI J H, CHEN X F, et al. Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter[J]. Applied Physics Letters, 2006, 88(12): 121118. doi: 10.1063/1.2187944
|
[6] |
SHI J H, WANG J H, CHEN L J, et al. Tunable Šolc-type filter in periodically poled LiNbO3 by UV-light illumination[J]. Optics Express, 2006, 14(13): 6279-6284. doi: 10.1364/OE.14.006279
|
[7] |
LIU X, YANG Y, HAN L, et al. Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials[J]. Optics Express, 2017, 25(7): 7288-7299. doi: 10.1364/OE.25.007288
|
[8] |
PURTSELADZE A L, TARASASHVILI V I, SHAVERDOVA V G, et al. Polarization memory of denisyuk holograms formed in unpolarized light[J]. Journal of Applied Spectroscopy, 2014, 81(1): 63-68. doi: 10.1007/s10812-014-9887-8
|
[9] |
YANG H M, MA C W, WANG J Y, et al. The transmission of polarized light of space attitude in quantum communication[J]. Acta Photonica Sinica, 2015, 44(12): 1227002. (in Chinese) doi: 10.3788/gzxb20154412.1227002
|
[10] |
CAROZZI T D. Simple estimation of all-sky, direction-dependent Jones matrix of primary beams of radio interferometers[J]. Astronomy and Computing, 2016, 16: 185-188. doi: 10.1016/j.ascom.2014.11.002
|
[11] |
CAROZZI T D, WOAN G. A fundamental figure of merit for radio polarimeters[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(6): 2058-2065. doi: 10.1109/TAP.2011.2123862
|
[12] |
BRAAF B. Fiber-based Jones-matrix polarization-sensitive OCT of the human retina[J]. Investigative Ophthalmology &Visual Science, 2016, 57(12).
|
[13] |
MENZEL M, MICHIELSEN K, DE RAEDT H, et al. A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue[J]. Journal of the Royal Society Interface, 2015, 12(111): 20150734. doi: 10.1098/rsif.2015.0734
|
[14] |
YANG T D, PARK K, KANG Y G, et al. Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens[J]. Optics Express, 2016, 24(25): 29302-29311. doi: 10.1364/OE.24.029302
|
[15] |
SHEPPARD C J R. Jones and Stokes parameters for polarization in three dimensions[J]. Physical Review A, 2014, 90(2): 023809. doi: 10.1103/PhysRevA.90.023809
|
[16] |
KANG H, JIA B H, GU M. Polarization characterization in the focal volume of high numerical aperture objectives[J]. Optics Express, 2010, 18(10): 10813-10821. doi: 10.1364/OE.18.010813
|
[17] |
ORLOV S, PESCHEL U, BAUER T, et al. Analytical expansion of highly focused vector beams into vector spherical harmonics and its application to Mie scattering[J]. Physical Review A, 2012, 85(6): 063825. doi: 10.1103/PhysRevA.85.063825
|
[18] |
LI E, MAKITA S, HONG Y J, et al. Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography[J]. Biomedical Optics Express, 2017, 8(3): 1290-1305. doi: 10.1364/BOE.8.001290
|
[19] |
JONES R C. A new calculus for the treatment of optical systems. VII. Properties of the N-matrices[J]. Journal of the Optical Society of America, 1948, 38(8): 671-685. doi: 10.1364/JOSA.38.000671
|
[20] |
HE W J, FU Y G, LIU Z Y, et al. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus[J]. Optics Communications, 2017, 387: 128-134. doi: 10.1016/j.optcom.2016.11.046
|
[21] |
HE W J, FU Y G, ZHENG Y, et al. Polarization properties of a corner-cube retroreflector with three-dimensional polarization ray-tracing calculus[J]. Applied Optics, 2013, 52(19): 4527-4535. doi: 10.1364/AO.52.004527
|
[22] |
LI Y H, FU Y G, LIU Z Y, et al. Three-dimensional polarization algebra for all polarization sensitive optical systems[J]. Optics Express, 2018, 26(11): 14109-14122. doi: 10.1364/OE.26.014109
|
[23] |
ZHANG H Y, LI Y, YAN CH X, et al. Three-dimensional polarization ray tracing calculus for partially polarized light[J]. Optics Express, 2017, 25(22): 26973-26986. doi: 10.1364/OE.25.026973
|
[24] |
YEH P. Extended Jones matrix method[J]. Journal of the Optical Society of America, 1982, 72(4): 507-513. doi: 10.1364/JOSA.72.000507
|
[25] |
AZZAM R M A. Three-dimensional polarization states of monochromatic light fields[J]. Journal of the Optical Society of America A, 2011, 28(11): 2279-2283. doi: 10.1364/JOSAA.28.002279
|
[26] |
ORTEGA-QUIJANO N, ARCE-DIEGO J L. Generalized Jones matrices for anisotropic media[J]. Optics Express, 2013, 21(6): 6895-6900. doi: 10.1364/OE.21.006895
|
[27] |
ORTEGA-QUIJANO N, FADE J, ALOUINI M. Generalized Jones matrix method for homogeneous biaxial samples[J]. Optics Express, 2015, 23(16): 20428-20438. doi: 10.1364/OE.23.020428
|
[28] |
FLOSSMANN F, SCHWARZ U T, MAIER M, et al. Polarization singularities from unfolding an optical vortex through a birefringent crystal[J]. Physical Review Letters, 2005, 95(25): 253901. doi: 10.1103/PhysRevLett.95.253901
|
[29] |
FLOSSMANN F, SCHWARZ U T, MAIER M, et al. Stokes parameters in the unfolding of an optical vortex through a birefringent crystal[J]. Optics Express, 2006, 14(23): 11402-11411. doi: 10.1364/OE.14.011402
|
[30] |
DMITRIEV V G, GURZADYAN G G, NIKOGOSYAN D N. Handbook of Nonlinear Optical Crystals[M]. 3rd ed. Berlin: Springer, 1999.
|
[1] | CAO Zong-xin, QIAN Yi-long, LIU Yu-tong, LI Kun, LI Zi-fan, GONG Jun-hao, HU Wu-sheng, ZHANG Da-wei, HONG Rui-jin, MAO Hong-min, LU Huan-jun, FAN Li-na, CAO Zhao-liang. Research on pointing accuracy of liquid crystal phase array based on the variable period grating method[J]. Chinese Optics, 2025, 18(1): 29-41. doi: 10.37188/CO.2024-0097 |
[2] | YU Hai-yang, SHANG Fan-hua, WANG Yu-xing, WANG Da-tao, CHEN Chun-yi. Recognition method for vortex beams orbital angular momentum with imbalanced label[J]. Chinese Optics, 2025, 18(2): 207-215. doi: 10.37188/CO.2024-0155 |
[3] | WANG Hua-xin, WANG Tong, XIONG Han. Measurement of orbital angular momentum of vortex beam by topological charge difference[J]. Chinese Optics, 2025, 18(2): 216-223. doi: 10.37188/CO.2024-0141 |
[4] | FANG Yuan-xiang, JIANG Lun, PEI Hui-yi, WANG Jin-jiang, CUI Yong, ZHANG Jia-ming. Tilt error’s characteristic analysis of dual liquid crystal polarization grating system[J]. Chinese Optics, 2024, 17(6): 1387-1396. doi: 10.37188/CO.2024-0041 |
[5] | LI Ying-chao, ZHAO Zhe-hao, WANG Qi, LIU Jia-nan, SHI Hao-dong, FU Qiang, SUN Hong-yu. Polarization spectral image fusion method for hybrid backgrounds of ground objects[J]. Chinese Optics, 2024, 17(5): 1098-1111. doi: 10.37188/CO.2023-0185 |
[6] | XUE Yi-meng, LIU Bing-cai, PAN Yong-qiang, FANG Xin-meng, TIAN Ai-ling, ZHANG Rui-xuan. Vortex phase-shifting digital holography for micro-optical element surface topography measurment[J]. Chinese Optics, 2024, 17(4): 852-861. doi: 10.37188/CO.2023-0180 |
[7] | JIN Hao-shu, LIU Hui, XU Si-yuan, LU Bao-le, BAI Jin-tao. Polarization-multiplexing of a laser based on a bulk Yb:CALGO crystal[J]. Chinese Optics, 2023, 16(6): 1475-1481. doi: 10.37188/CO.EN-2023-0005 |
[8] | SU De-zhi, LIU Liang, WANG Kun, WU Shi-yong, LIU Ling-shun, MING Rui-long, GONG Jian. Sea-sky-line detection method based on polarization difference images[J]. Chinese Optics, 2023, 16(3): 596-606. doi: 10.37188/CO.2022-0181 |
[9] | TIAN Jun-tao, LI Hui, ZHAO Li-li, LI Zhi-yong, WANG Hai, LIU Song-yang, XU Wen-ning, BAI Jin-zhou, TAN Rong-qing. Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2[J]. Chinese Optics, 2023, 16(4): 861-867. doi: 10.37188/CO.2022-0217 |
[10] | LIANG Meng-ting, CHENG Ke, SHU Ling-yun, LIAO Sai, YANG Ceng-hao, HUANG Hong-wei. The poynting vector and angular momentum density of Cosh-Pearcey-Gaussian vortex beams in uniaxial crystals[J]. Chinese Optics, 2023, 16(1): 193-201. doi: 10.37188/CO.EN.2022-0007 |
[11] | YANG Ceng-hao, CHENG Ke, HUANG Hong-wei, LIAO Sai, LIANG Meng-ting, SHU Ling-yun. Orbital-angular-momentum spectra in coherent optical vortex beam arrays with hybrid states of polarization[J]. Chinese Optics, 2023, 16(6): 1501-1511. doi: 10.37188/CO.EN-2023-0010 |
[12] | ZHA Zheng-tao, ZHANG Qian-shu. Electrically controlled polarization rotator based on liquid crystal optical waveguide[J]. Chinese Optics, 2022, 15(3): 552-561. doi: 10.37188/CO.2021-0213 |
[13] | CHENG Ke, ZHU Bo-yuan, SHU Ling-yun, LIAO Sai, LIANG Meng-ting. Averaged intensity and spectral shift of partially coherent chirped optical coherence vortex lattices in biological tissue turbulence[J]. Chinese Optics, 2022, 15(2): 364-372. doi: 10.37188/CO.EN.2021-0010 |
[14] | LU Teng-fei, ZHANG Kai-ning, WU Zhi-jun, LIU Yong-xin. Propagation properties of elliptical vortex beams in turbulent ocean[J]. Chinese Optics, 2020, 13(2): 323-332. doi: 10.3788/CO.20201302.0323 |
[15] | ZHOU Zheng, LI Jin-hua, FANG Fang, CHU Xue-ying, FANG Xuan, WEI Zhi-peng, WANG Xiao-hua. Zn2GeO4 nanowires prepared by chemical vapor deposition and its luminescence properties[J]. Chinese Optics, 2014, 7(2): 281-286. doi: 10.3788/CO.20140702.0281 |
[16] | LIU Zhi, LI Chuan-bo, XUE Chun-lai, CHENG Bu-wen. Progress in Ge/Si heterostructures for light emitters[J]. Chinese Optics, 2013, 6(4): 449-456. doi: 10.3788/CO.20130604.0449 |
[17] | KU Shin-an, ZHU Wei-chen, LUO Chih-wei, ANGELUTS A A, EVDOKIMOV M G, NAZAROV M M, SHKURINOV A P, ANDREEV Y M, LANSKII G V, SHAIDUKO A V, KOKH K A, SVETLICHNYI V A. Optical properties and application of GaSe∶AgGaSe2 crystal[J]. Chinese Optics, 2012, 5(1): 57-63. doi: 10.3788/CO.20120501.0057 |
[18] | Wang Bo. Polarization-selectivity of high-density phase gratings[J]. Chinese Optics, 2010, 3(4): 348-352. |
[19] | YU Qian-yang, QU Hong-song. Realization of high resolution visible earth observation on geostationary earth orbit[J]. Chinese Optics, 2009, 2(1): 1-9. |
[20] | YU Qian-yang, QU Hong-song. Realization of high resolution visible earth observation on geostationary earth orbit[J]. Chinese Optics, 2008, 1(1): 1-12. |
1. | 周瑞其,张妮慧,张鸿博. LD泵浦光在侧泵模块水冷结构传输中的偏振态变化和光强衰减分析. 半导体光电. 2021(02): 212-218 . ![]() | |
2. | 于策,王天枢,张莹,林鹏,郑崇辉,马万卓. 大气湍流信道中OAM光束与高斯光束传输性能的实验研究. 红外与激光工程. 2021(08): 309-318 . ![]() |