Volume 13 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
SONG Dong-sheng, ZHENG Yuan-lin, LIU Hu, HU Wei-xing, ZHANG Zhi-yun, CHEN Xian-feng. Eigen generalized Jones matrix method[J]. Chinese Optics, 2020, 13(3): 637-645. doi: 10.3788/CO.2019-0163
Citation: SONG Dong-sheng, ZHENG Yuan-lin, LIU Hu, HU Wei-xing, ZHANG Zhi-yun, CHEN Xian-feng. Eigen generalized Jones matrix method[J]. Chinese Optics, 2020, 13(3): 637-645. doi: 10.3788/CO.2019-0163

Eigen generalized Jones matrix method

Funds:  Supported by National Natural Science Foundation of China (No. 11734011); Foundation for Development of Science and Technology of Shanghai (No. 17JC1400402)
More Information
  • Author Bio:

    SONG Dong-sheng (1985—), Male, born in Zhengzhou City, Henan Province. M.Sc., Graduated from Shanghai Jiao Tong University in 2018. Engineer, Luoyang Electronic Equipment Test Center of China. His research interests are on nonlinear optics, frequency conversion and light field regulation. E-mail: sds0754@alumni.sjtu.edu.cn

  • Corresponding author: sds0754@alumni.sjtu.edu.cn
  • Received Date: 05 Aug 2019
  • Rev Recd Date: 29 Sep 2019
  • Publish Date: 01 Jun 2020
  • A differential generalized Jones matrix method (dGJM) was recently introduced by Ortega-Quijano and colleagues to derive the GJM for modelling uniaxial and biaxial crystals with arbitrary orientations in laboratory coordinate systems. Later, we propose an eigen generalized Jones matrix method to simulate the phase and polarization of fully polarized light propagating in an anisotropic crystal when the optical axis orientations and light directions are both arbitrary. In our method, we use physics that are equivalent in principle to those of Ortega-Quijano, but we use a modified mathematical technique. We introduce the eigen generalized Jones matrix in the intrinsic coordinate system to precisely calculate the phase and polarization of the light, which overcomes the limitations of the differential generalized Jones matrix method. The simulation results indicate that our method can be used to calculate the polarization distribution, regardless of how the light beam and optical axis positioned, or whether the light beam has a vortex.

     

  • loading
  • [1]
    YU F H, KWOK H S. Comparison of extended Jones matrices for twisted nematic liquid-crystal displays at oblique angles of incidence[J]. Journal of the Optical Society of America A, 1999, 16(11): 2772-2780. doi: 10.1364/JOSAA.16.002772
    [2]
    LIEN A, CHEN C J. A new 2× 2 matrix representation for twisted nematic liquid crystal displays at oblique incidence[J]. Japanese Journal of Applied Physics, 1996, 35(9B): L1200-L1203.
    [3]
    AZZAM R M A, BASHARA N M. Generalized ellipsometry for surfaces with directional preference: application to diffraction gratings[J]. Journal of the Optical Society of America, 1972, 62(12): 1521-1523. doi: 10.1364/JOSA.62.001521
    [4]
    CHEN X F, SHI J H, CHEN Y P, et al. Electro-optic Solc-type wavelength filter in periodically poled lithium niobate[J]. Optics Letters, 2003, 28(21): 2115-2117. doi: 10.1364/OL.28.002115
    [5]
    CHEN L J, SHI J H, CHEN X F, et al. Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter[J]. Applied Physics Letters, 2006, 88(12): 121118. doi: 10.1063/1.2187944
    [6]
    SHI J H, WANG J H, CHEN L J, et al. Tunable Šolc-type filter in periodically poled LiNbO3 by UV-light illumination[J]. Optics Express, 2006, 14(13): 6279-6284. doi: 10.1364/OE.14.006279
    [7]
    LIU X, YANG Y, HAN L, et al. Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials[J]. Optics Express, 2017, 25(7): 7288-7299. doi: 10.1364/OE.25.007288
    [8]
    PURTSELADZE A L, TARASASHVILI V I, SHAVERDOVA V G, et al. Polarization memory of denisyuk holograms formed in unpolarized light[J]. Journal of Applied Spectroscopy, 2014, 81(1): 63-68. doi: 10.1007/s10812-014-9887-8
    [9]
    YANG H M, MA C W, WANG J Y, et al. The transmission of polarized light of space attitude in quantum communication[J]. Acta Photonica Sinica, 2015, 44(12): 1227002. (in Chinese) doi: 10.3788/gzxb20154412.1227002
    [10]
    CAROZZI T D. Simple estimation of all-sky, direction-dependent Jones matrix of primary beams of radio interferometers[J]. Astronomy and Computing, 2016, 16: 185-188. doi: 10.1016/j.ascom.2014.11.002
    [11]
    CAROZZI T D, WOAN G. A fundamental figure of merit for radio polarimeters[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(6): 2058-2065. doi: 10.1109/TAP.2011.2123862
    [12]
    BRAAF B. Fiber-based Jones-matrix polarization-sensitive OCT of the human retina[J]. Investigative Ophthalmology &Visual Science, 2016, 57(12).
    [13]
    MENZEL M, MICHIELSEN K, DE RAEDT H, et al. A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue[J]. Journal of the Royal Society Interface, 2015, 12(111): 20150734. doi: 10.1098/rsif.2015.0734
    [14]
    YANG T D, PARK K, KANG Y G, et al. Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens[J]. Optics Express, 2016, 24(25): 29302-29311. doi: 10.1364/OE.24.029302
    [15]
    SHEPPARD C J R. Jones and Stokes parameters for polarization in three dimensions[J]. Physical Review A, 2014, 90(2): 023809. doi: 10.1103/PhysRevA.90.023809
    [16]
    KANG H, JIA B H, GU M. Polarization characterization in the focal volume of high numerical aperture objectives[J]. Optics Express, 2010, 18(10): 10813-10821. doi: 10.1364/OE.18.010813
    [17]
    ORLOV S, PESCHEL U, BAUER T, et al. Analytical expansion of highly focused vector beams into vector spherical harmonics and its application to Mie scattering[J]. Physical Review A, 2012, 85(6): 063825. doi: 10.1103/PhysRevA.85.063825
    [18]
    LI E, MAKITA S, HONG Y J, et al. Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography[J]. Biomedical Optics Express, 2017, 8(3): 1290-1305. doi: 10.1364/BOE.8.001290
    [19]
    JONES R C. A new calculus for the treatment of optical systems. VII. Properties of the N-matrices[J]. Journal of the Optical Society of America, 1948, 38(8): 671-685. doi: 10.1364/JOSA.38.000671
    [20]
    HE W J, FU Y G, LIU Z Y, et al. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus[J]. Optics Communications, 2017, 387: 128-134. doi: 10.1016/j.optcom.2016.11.046
    [21]
    HE W J, FU Y G, ZHENG Y, et al. Polarization properties of a corner-cube retroreflector with three-dimensional polarization ray-tracing calculus[J]. Applied Optics, 2013, 52(19): 4527-4535. doi: 10.1364/AO.52.004527
    [22]
    LI Y H, FU Y G, LIU Z Y, et al. Three-dimensional polarization algebra for all polarization sensitive optical systems[J]. Optics Express, 2018, 26(11): 14109-14122. doi: 10.1364/OE.26.014109
    [23]
    ZHANG H Y, LI Y, YAN CH X, et al. Three-dimensional polarization ray tracing calculus for partially polarized light[J]. Optics Express, 2017, 25(22): 26973-26986. doi: 10.1364/OE.25.026973
    [24]
    YEH P. Extended Jones matrix method[J]. Journal of the Optical Society of America, 1982, 72(4): 507-513. doi: 10.1364/JOSA.72.000507
    [25]
    AZZAM R M A. Three-dimensional polarization states of monochromatic light fields[J]. Journal of the Optical Society of America A, 2011, 28(11): 2279-2283. doi: 10.1364/JOSAA.28.002279
    [26]
    ORTEGA-QUIJANO N, ARCE-DIEGO J L. Generalized Jones matrices for anisotropic media[J]. Optics Express, 2013, 21(6): 6895-6900. doi: 10.1364/OE.21.006895
    [27]
    ORTEGA-QUIJANO N, FADE J, ALOUINI M. Generalized Jones matrix method for homogeneous biaxial samples[J]. Optics Express, 2015, 23(16): 20428-20438. doi: 10.1364/OE.23.020428
    [28]
    FLOSSMANN F, SCHWARZ U T, MAIER M, et al. Polarization singularities from unfolding an optical vortex through a birefringent crystal[J]. Physical Review Letters, 2005, 95(25): 253901. doi: 10.1103/PhysRevLett.95.253901
    [29]
    FLOSSMANN F, SCHWARZ U T, MAIER M, et al. Stokes parameters in the unfolding of an optical vortex through a birefringent crystal[J]. Optics Express, 2006, 14(23): 11402-11411. doi: 10.1364/OE.14.011402
    [30]
    DMITRIEV V G, GURZADYAN G G, NIKOGOSYAN D N. Handbook of Nonlinear Optical Crystals[M]. 3rd ed. Berlin: Springer, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(2631) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return