Volume 12 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
WANG Jun-min, BAI Jian-dong, WANG Jie-ying, LIU Shuo, YANG Bao-dong, HE Jun. Realization of a watt-level 319-nm single-frequency CW ultraviolet laser and its application in single-photon Rydberg excitation of cesium atoms[J]. Chinese Optics, 2019, 12(4): 701-718. doi: 10.3788/CO.20191204.0701
Citation: WANG Jun-min, BAI Jian-dong, WANG Jie-ying, LIU Shuo, YANG Bao-dong, HE Jun. Realization of a watt-level 319-nm single-frequency CW ultraviolet laser and its application in single-photon Rydberg excitation of cesium atoms[J]. Chinese Optics, 2019, 12(4): 701-718. doi: 10.3788/CO.20191204.0701

Realization of a watt-level 319-nm single-frequency CW ultraviolet laser and its application in single-photon Rydberg excitation of cesium atoms

Funds:

the National Natural Science Foundation of China 61475091

the Shanxi Provincial 1331 Project for Key Subjects Construction 

More Information
  • Corresponding author: WANG Jun-min, E-mail:wwjjmm@sxu.edu.cn
  • Received Date: 16 Jan 2019
  • Rev Recd Date: 22 Feb 2019
  • Publish Date: 01 Aug 2019
  • In order to meet the demand for single-photon Rydberg excitation of cesium atoms in the field of atomic physics, we investigated the key technolgies of single-frequency continuous wave(CW) tunable ultraviolet(UV) laser at 318.6 nm. Combining the fiber lasers, fiber amplifiers and the nonlinear crystals, we achieved 318.6 nm UV laser over 2 Watt output with cavity-enhanced second-harmonic generation following the sum-frequency generation of two infrared lasers at 1 560.5 nm and 1 076.9 nm in PPLN crystal. The typical root-mean-square fluctuation of UV laser power was less than 0.87% within 30 minutes. The electronic side-band locking scheme based on a temperature controlled hyper-fine ultra-stable ultra-low-expansion cavity placed in an ultra-high vacuum chamber was used to achieve the continuously tuning of UV laser in a wide range while still keeping it locked. The continuously tunable range was larger than 4 GHz and the residual frequency fluctuation of UV laser was about 16 kHz. We employed this high-power single-frequency continuously tunable UV laser system for the direct 6S1/2nP3/2(n=70-100) Rydberg excitation of cesium atoms with atomic vapor cells in experiments. After that, relevant theoretical analysis and research have been done. With a magneto-optical trapped cesium atomic ensemble, single-photon Rydberg excitation using the UV laser system was achieved with a pure optical detection scheme.

     

  • loading
  • [1]
    GALLAGHER T F. Rydberg Atoms[M]. Cambridge:Cambridge University Press, 1994.
    [2]
    PONOMARENKO D V, SHESTAKOV A F. Polarizabilities of ns and np Rydberg states of the Li atom[J]. Chemical Physics Letters, 1993, 210(1-3):269-273. doi: 10.1016/0009-2614(93)89132-2
    [3]
    BALUKTSIAN T, HUBER B, LÖW R, et al.. Evidence for strong van der Waals type Rydberg-Rydberg interaction in a thermal vapor[J]. Physical Review Letters, 2013, 110(12):123001. doi: 10.1103/PhysRevLett.110.123001
    [4]
    SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3):2313-2363. doi: 10.1103/RevModPhys.82.2313
    [5]
    MÜLLER M, LESANOVSKY I, WEIMER H, et al.. Mesoscopic Rydberg gate based on electromagnetically induced transparency[J]. Physical Review Letters, 2009, 102(17):170502. doi: 10.1103/PhysRevLett.102.170502
    [6]
    SEDLACEK J A, SCHWETTMANN A, KVBLER H, et al.. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11):819-824. doi: 10.1038/nphys2423
    [7]
    HANKIN A M, JAU Y Y, PARAZZOLI L P, et al.. Two-atom Rydberg blockade using direct 6S to nP excitation[J]. Physical Review A, 2014, 89(3):033416. doi: 10.1103/PhysRevA.89.033416
    [8]
    TONG D, FAROOQI S M, STANOJEVIC J, et al.. Local blockade of Rydberg excitation in an ultracold gas[J]. Physical Review Letters, 2004, 93(6):063001. doi: 10.1103/PhysRevLett.93.063001
    [9]
    ZHANG H, WANG L M, ZHANG L J, et al.. Stark-induced L-mixing interferences in ultracold cesium Rydberg atoms[J]. Physical Review A, 2013, 87(3):033405. doi: 10.1103/PhysRevA.87.033405
    [10]
    王丽, 张好, 张临杰.超冷里德堡原子的俘获损耗光谱[J].量子光学学报, 2018, 24(2):178-183. http://d.old.wanfangdata.com.cn/Periodical/lzgxxb201802009

    WANG L, ZHANG H, ZHANG L J. Trap loss spectroscopy of ultracold cesium Rydberg atoms[J]. Journal of Quantum Optics, 2018, 24(2):178-183.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lzgxxb201802009
    [11]
    韩小萱, 焦月春, 赵建明.ns6s里德堡分子的势能曲线[J].量子光学学报, 2017, 23(1):46-51. http://d.old.wanfangdata.com.cn/Periodical/lzgxxb201701006

    HAN X X, JIAO Y CH, ZHAO J M. Potential of long-range ns6s Rydberg molecule[J]. Journal of Quantum Optics, 2017, 23(1):46-51.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lzgxxb201701006
    [12]
    BARREDO D, RAVETS S, LABUHN H, et al.. Demonstration of a strong Rydberg blockade in three-atom systems with anisotropic interactions[J]. Physical Review Letters, 2014, 112(18):183002. doi: 10.1103/PhysRevLett.112.183002
    [13]
    JOHNSON J E, ROLSTON S L. Interactions between Rydberg-dressed atoms[J]. Physical Review A, 2010, 82(3):033412. doi: 10.1103/PhysRevA.82.033412
    [14]
    WILSON A C, OSPELKAUS C, VANDEVENDER A P, et al.. A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions[J]. Applied Physics B, 2011, 105(4):741-748. doi: 10.1007/s00340-011-4771-1
    [15]
    LO H Y, ALONSO J, KIENZLER D, et al.. All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions[J]. Applied Physics B, 2014, 114(1-2):17-25. doi: 10.1007/s00340-013-5605-0
    [16]
    BRIDGE E M, KEEGAN N C, BOUNDS A D, et al.. Tunable cw UV laser with < 35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states[J]. Optics Express, 2016, 24(3):2281-2292. doi: 10.1364/OE.24.002281
    [17]
    RENGELINK R J, NOTERMANS R P M J W, VASSEN W. A simple 2 W continuous-wave laser system for trapping ultracold metastable helium atoms at the 319.8 nm magic wavelength[J]. Applied Physics B, 2016, 122(5):122. doi: 10.1007/s00340-016-6395-y
    [18]
    WANG J Y, BAI J D, HE J, et al.. Realization and characterization of single-frequency tunable 637.2 nm high-power laser[J]. Optics Communications, 2016, 370:150-155. doi: 10.1016/j.optcom.2016.02.067
    [19]
    WANG J Y, BAI J D, HE J, et al.. Development and characterization of a 2.2 W narrow-linewidth 318.6 nm ultraviolet laser[J]. Journal of the Optical Society of America B, 2016, 33(10):2020-2025. doi: 10.1364/JOSAB.33.002020
    [20]
    BAI J D, WANG J Y, HE J, et al.. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity[J]. Journal of Optics, 2017, 19(4):045501. doi: 10.1088/2040-8986/aa5a8c
    [21]
    WANG J Y, BAI J D, HE J, et al.. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell[J]. Optics Express, 2017, 25(19):22510-22518. doi: 10.1364/OE.25.022510
    [22]
    BAI J D, WANG J Y, LIU S, et al.. Autler-Townes doublet in single-photon Rydberg spectra of cesium atomic vapor with a 319 nm UV laser[J]. Applied Physics B, 2019, 125(3):33. doi: 10.1007/s00340-019-7151-x
    [23]
    BAI J D, LIU S, WANG J Y, et al.. Single-photon Rydberg excitation and trap-loss spectroscopy of cold cesium atoms in a magneto-optical trap by using of a 319-nm ultra-violet laser system[J]. arXiv: 1811.05092v2, 2018.
    [24]
    白建东, 王杰英, 王军民.基于光纤延时声光频移自差拍法快速测量激光线宽[J].激光与光电子学进展, 2016, 53(6):061407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201606027

    BAI J D, WANG J Y, WANG J M. Rapid measurement of laser linewidth based on fiber-delayed AOM-shifted self-heterodyne scheme[J]. Laser & Optoelectronics Progress, 2016, 53(6):061407.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201606027
    [25]
    THOUMANY P, HÄNSCH T, STANIA G, et al.. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser[J]. Optics Letters, 2009, 34(11):1621-1623. doi: 10.1364/OL.34.001621
    [26]
    AUTLER S H, TOWNES C H. Stark effect in rapidly varying fields[J]. Physical Review, 1955, 100(2):703-722. doi: 10.1103/PhysRev.100.703
    [27]
    SCULLY M O, ZUBAIRY M S. Quantum Optics[M] Cambridge:Cambridge University Press, 1997.
    [28]
    FLEISCHHAUER M, IMAMOGLU A, MARANGOS J P. Electromagnetically induced transparency:Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2):633-673. doi: 10.1103/RevModPhys.77.633
    [29]
    HAU L V, HARRIS S E, DUTTON Z, et al.. Light speed reduction to 17 meters per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720):594-598. doi: 10.1038/17561
    [30]
    BRAJE D A, BALIĆ V, GODA S, et al.. Frequency mixing using electromagnetically induced transparency in cold atoms[J]. Physical Review Letters, 2004, 93(18):183601. doi: 10.1103/PhysRevLett.93.183601
    [31]
    AHMED E H, INGRAM S, KIROVA T, et al.. Quantum control of the spin-orbit interaction using the Autler-Townes effect[J]. Physical Review Letters, 2011, 107(16):163601. doi: 10.1103/PhysRevLett.107.163601
    [32]
    RAITZSCH U, HEIDEMANN R, WEIMER H, et al.. Investigation of dephasing rates in an interacting Rydberg gas[J]. New Journal of Physics, 2009, 11(5):055014. doi: 10.1088/1367-2630/11/5/055014
    [33]
    MITSUNAGA M, IMOTO N. Observation of an electromagnetically induced grating in cold sodium atoms[J]. Physical Review A, 1999, 59(6):4773-4776. doi: 10.1103/PhysRevA.59.4773
    [34]
    LIANG Q B, YANG B D, YANG J F, et al.. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms[J]. Chinese Physics B, 2010, 19(11):113207. doi: 10.1088/1674-1056/19/11/113207
    [35]
    MENON S, AGARWAL G S. Gain components in the Autler-Townes doublet from quantum interferences in decay channels[J]. Physical Review A, 1999, 61(1):013807. doi: 10.1103/PhysRevA.61.013807
    [36]
    SINGER K, REETZ-LAMOUR M, AMTHOR T, et al.. Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms[J]. Physical Review Letters, 2004, 93(16):163001. doi: 10.1103/PhysRevLett.93.163001
    [37]
    BOISSEAU C, SIMBOTIN I, CÔTÉ R. Macrodimers:ultralong range Rydberg molecules[J]. Physical Review Letters, 2002, 88(13):133004. doi: 10.1103/PhysRevLett.88.133004
    [38]
    MARINESCU M. Dispersion coefficients for the nP-nP asymptote of homonuclear alkali-metal dimers[J]. Physical Review A, 1997, 56(6):4764-4773. doi: 10.1103/PhysRevA.56.4764
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article views(4454) PDF downloads(159) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return