Volume 12 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
WANG Xian-min, LIU Dong, ZANG Zhong-ming, WU Lan, YAN Tian-liang, ZHOU Yu-hao, ZHANG Yu-peng. The regularized phase tracking technique used in single closed interferogram phase retrieval[J]. Chinese Optics, 2019, 12(4): 719-730. doi: 10.3788/CO.20191204.0719
Citation: WANG Xian-min, LIU Dong, ZANG Zhong-ming, WU Lan, YAN Tian-liang, ZHOU Yu-hao, ZHANG Yu-peng. The regularized phase tracking technique used in single closed interferogram phase retrieval[J]. Chinese Optics, 2019, 12(4): 719-730. doi: 10.3788/CO.20191204.0719

The regularized phase tracking technique used in single closed interferogram phase retrieval

Funds:

National Key Research and Development Program of China 2016YFC0200700

the National Natural Science Foundation of China 41775023

the National Natural Science Foundation of China 61475141

More Information
  • Corresponding author: LIU Dong, , E-mail:liudongopt@zju.edu.cn; WU Lan, E-mail:wul@zju.edu.cn
  • Received Date: 25 Sep 2018
  • Rev Recd Date: 16 Nov 2018
  • Publish Date: 01 Aug 2019
  • Different kinds of modulation methods are usually adopted when physical quantities, such as temperature, forces and deformation, are measured in interference. Fringe patterns carry measurement information of those quantities and are usually later analyzed for its retrieval. Single closed fringes are generally what is recorded by CCD. When the experimental conditions are not conducive to phase shifting, loading wave and other modulation means, the regularized phase tracking(RPT) technique can retrieve a continuous phase map directly from a single interferogram, making it the most effective method. In recent years, RPT technique has been improved to achieve higher processing power, algorithm robustness and retrieval accuracy for complex fringe patterns, ultimately making it more practical. In this paper, we introduce the basic algorithm principle and how the RPT technique is applied in the retrieval of single interferograms, review the technique's relevant modifications and developments in recent years, cite some examples used for phase retrieval and speculate the direction of its future development.

     

  • loading
  • [1]
    GÅSVIK K J. Optical Metrology[M]. 3rd ed. Hoboken:John Wiley & Sons, 2002.
    [2]
    郑文军.介晶双丙烯酸酯在全息干涉光场中的指向性交联[J].液晶与显示, 2010, 25(5):611-616. doi: 10.3969/j.issn.1007-2780.2010.05.001

    ZHENG W J. Orientational crosslinking of mesogenic diacrylates in holographic interference field[J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(5):611-616.(in Chinese) doi: 10.3969/j.issn.1007-2780.2010.05.001
    [3]
    范应娟, 袁桃利, 张麦丽.偏光干涉法检测LCD间隔的均匀性[J].液晶与显示, 2015, 30(3):416-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs201503008

    FAN Y J, YUAN T L, ZHANG M L.Testing uniformity of spacers in LCD with the way of polarization interference[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(3):416-420.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs201503008
    [4]
    MALACARA D, SERVÍN M, MALACARA Z. Interferogram Analysis for Optical Testing[M]. 2nd ed. Florida, USA:CRC Press, 2005.
    [5]
    CHENG ZH T, LIU D. Fast and accurate wavefront reconstruction in two-frame phase-shifting interferometry with unknown phase step[J]. Optics Letters, 2018, 43(13):3033-3036. doi: 10.1364/OL.43.003033
    [6]
    TIAN CH, LIU SH CH. Phase retrieval in two-shot phase-shifting interferometry based on phase shift estimation in a local mask[J]. Optics Express, 2017, 25(18):21673-21683. doi: 10.1364/OE.25.021673
    [7]
    TIAN CH, YANG Y Y, WEI T, et al.. Demodulation of a single-image interferogram using a Zernike-polynomial-based phase-fitting technique with a differential evolution algorithm[J]. Optics Letters, 2011, 36(12):2318-2320. doi: 10.1364/OL.36.002318
    [8]
    LIU F W, WANG J, WU Y Q, et al.. Simultaneous extraction of phase and phase shift from two interferograms using Lissajous figure and ellipse fitting technology with Hilbert-Huang prefiltering[J]. Journal of Optics, 2016, 18(10):105604. doi: 10.1088/2040-8978/18/10/105604
    [9]
    QIAN K M. Windowed Fringe Pattern Analysis[M]. Bellingham, Washington, USA:SPIE Press, 2013.
    [10]
    SERVIN M, MARROQUIN J L, CUEVAS F J. Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique[J]. Applied Optics, 1997, 36(19):4540-4548. doi: 10.1364/AO.36.004540
    [11]
    刘东, 杨甬英, 田超, 等.高精度单幅闭合条纹干涉图相位重构技术[J].中国激光, 2010, 37(2):531-536. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201002039

    LIU D, YANG Y Y, TIAN CH, et al..Study on phase retrieval from single close fringe pattern with high precision[J]. Chinese Journal of Lasers, 2010, 37(2):531-536.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201002039
    [12]
    TIAN CH, YANG Y Y, LIU D, et al.. Demodulation of a single complex fringe interferogram with a path-independent regularized phase-tracking technique[J]. Applied Optics, 2010, 49(2):170-179. doi: 10.1364/AO.49.000170
    [13]
    LI K, QIAN K M. Improved generalized regularized phase tracker for demodulation of a single fringe pattern[J]. Optics Express, 2013, 21(20):24385-24397. doi: 10.1364/OE.21.024385
    [14]
    LI K, QIAN K M. A generalized regularized phase tracker for demodulation of a single fringe pattern[J]. Optics Express, 2012, 20(11):12579-12592. doi: 10.1364/OE.20.012579
    [15]
    HE A H, DEEPAN B, QUAN C. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe[J]. Applied Optics, 2017, 56(25):7217-7224. doi: 10.1364/AO.56.007217
    [16]
    DEEPAN B, QUAN CH G, TAY C J. Determination of slope, curvature, and twist from a single shearography fringe pattern using derivative-based regularized phase tracker[J]. Optical Engineering, 2016, 55(12):121707. doi: 10.1117/1.OE.55.12.121707
    [17]
    DEEPAN B, QUAN C, TAY C J. A derivative based simplified phase tracker for a single fringe pattern demodulation[J]. Optics and Lasers in Engineering, 2016, 83:83-89. doi: 10.1016/j.optlaseng.2016.03.012
    [18]
    QUIROGA J A, SERVIN M. Isotropic n-dimensional fringe pattern normalization[J]. Optics Communications, 2003, 224(4-6):221-227. doi: 10.1016/j.optcom.2003.07.014
    [19]
    QUIROGA J A, GÓMEZ-PEDRERO J A, GARCÍA-BOTELLA Á. Algorithm for fringe pattern normalization[J]. Optics Communications, 2001, 197(1-3):43-51. doi: 10.1016/S0030-4018(01)01440-7
    [20]
    BERNINI M B, FEDERICO A, KAUFMANN G H. Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform[J]. Applied Optics, 2009, 48(36):6862-6869. doi: 10.1364/AO.48.006862
    [21]
    TIEN C L, JYU S S, YANG H M. A method for fringe normalization by Zernike polynomial[J]. Optical Review, 2009, 16(2):173-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c06bcbb19181532f4aae8fd8000e9f8a
    [22]
    OCHOA N A, SILVA-MORENO A. Normalization and noise-reduction algorithm for fringe patterns[J]. Optics Communications, 2007, 270(2):161-168. doi: 10.1016/j.optcom.2006.09.062
    [23]
    STASZEK K, BOGUSZ M. Simple fringe pattern normalization algorithm[J]. IFAC Proceedings Volumes, 2012, 45(7):353-356. doi: 10.3182/20120523-3-CZ-3015.00067
    [24]
    SERVIN M, MARROQUIN J L, CUEVAS F J. Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms[J]. Journal of the Optical Society of America A, 2001, 18(3):689-695. doi: 10.1364/JOSAA.18.000689
    [25]
    LEGARDA-SAENZ R, RIVERA M. Fast half-quadratic regularized phase tracking for nonnormalized fringe patterns[J]. Journal of the Optical Society of America A, 2006, 23(11):2724-2731. doi: 10.1364/JOSAA.23.002724
    [26]
    LEGARDA-SÁENZ R, OSTEN W, JUPTNER W. Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns[J]. Applied Optics, 2002, 41(26):5519-5526. doi: 10.1364/AO.41.005519
    [27]
    TIAN CH, YANG Y Y, ZHANG SH N, et al.. Regularized frequency-stabilizing method for single closed-fringe interferogram demodulation[J]. Optics Letters, 2010, 35(11):1837-1839. doi: 10.1364/OL.35.001837
    [28]
    QUIROGA J A, VILLA J, CRESPO D. Automatic techniques for evaluation of moire deflectograms[J]. Proceedings of SPIE, 1999, 3744:328-334. doi: 10.1117/12.357730
    [29]
    VILLA J, SERVIN M. Robust profilometer for the measurement of 3-D object shapes based on a regularized phase tracker[J]. Optics and Lasers in Engineering, 1999, 31(4):279-288. doi: 10.1016/S0143-8166(99)00023-8
    [30]
    SERVIN M, CUEVAS F J, MALACARA D, et al.. Direct ray aberration estimation in Hartmanngrams by use of a regularized phase-tracking system[J]. Applied Optics, 1999, 38(13):2862-2869. doi: 10.1364/AO.38.002862
    [31]
    VILLA J, QUIROGA J A, SERVÍN M. Improved regularized phase-tracking technique for the processing of squared-grating deflectograms[J]. Applied Optics, 2000, 39(4):502-508. doi: 10.1364/AO.39.000502
    [32]
    RAMESH K, KASIMAYAN T, NEETHI SIMON B. Digital photoelasticity A comprehensive review[J]. The Journal of Strain Analysis for Engineering Design, 2011, 46(4):245-266. doi: 10.1177/0309324711401501
    [33]
    PATTERSON E A. Digital photoelasticity:principles, practice and potential:measurements lecture[J]. Strain, 2002, 38(1):27-39. doi: 10.1046/j.0039-2103.2002.00004.x
    [34]
    QUIROGA J A, GONZALEZ-CANO A. Application of regularization methods to the analysis of photoelastic fringe patterns[J]. Proceedings of SPIE, 1999, 3744:318-327. doi: 10.1117/12.357729
    [35]
    SIEGMANN P, DÍAZ-GARRIDO F, PATTERSON E A. Robust approach to regularize an isochromatic fringe map[J]. Applied Optics, 2009, 48(22):E24-E34. doi: 10.1364/AO.48.000E24
    [36]
    SERVIN M, QUIROGA J A. Isochromatics demodulation from a single image using the regularized phase tracking technique[J]. Journal of Modern Optics, 2001, 48(3):521-531. doi: 10.1080/09500340108230929
    [37]
    QUIROGA J A, SERVIN M, MARROQUIN J L. Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image[J]. Measurement Science and Technology, 2002, 13(1):132-140. doi: 10.1088/0957-0233/13/1/317
    [38]
    QUIROGA J A, GONZÁLEZ-CANO A. Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique[J]. Applied Optics, 2000, 39(17):2931-2940. doi: 10.1364/AO.39.002931
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(3412) PDF downloads(226) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return