Volume 12 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
GAO Xu, LI Shu-Hang, MA Qing-lin, CHEN Wei. Development of grating-based precise displacement measurement technology[J]. Chinese Optics, 2019, 12(4): 741-752. doi: 10.3788/CO.20191204.0741
Citation: GAO Xu, LI Shu-Hang, MA Qing-lin, CHEN Wei. Development of grating-based precise displacement measurement technology[J]. Chinese Optics, 2019, 12(4): 741-752. doi: 10.3788/CO.20191204.0741

Development of grating-based precise displacement measurement technology

Funds:

National Natural Science Foundation of China 51505078

Outstanding Youth Fund of Jilin Science and Technology Department 20180520187JH

Jilin Provincial Department of Education "13th Five-Year" Science and Technology Project Fund JJKH20190544KJ

China Postdoctoral Science Foundation Funded Project 2018M641778

More Information
  • Corresponding author: GAO Xu, E-mail:gaox19870513@163.com
  • Received Date: 07 Nov 2018
  • Rev Recd Date: 29 Dec 2018
  • Publish Date: 01 Aug 2019
  • Precision measurement is the basis of precision machining and it's one of the decisive factors of manufacturing accuracy in the manufacturing industry. It is widely used in the field of contemporary precision machinery manufacturing. The grating-based precise displacement measurement system play an important role in the field of precise displacement measurement because of its small environmental requirements and high resolution. The grating-based precise displacement measurement system includes optical measurement, signal reception, electronic subdivision and integral adjustment. In this paper, the optical path of optical measurement is introduced. Firstly, the principles of classical grating interferometric displacement measurement are introduced. Secondly, the key technologies of the grating-based precise displacement measurement system are summarized. Thirdly, the latest representative measurement techniques are compared and analyzed, and their advantages and disadvantages are summarized. Finally, prospects are provided for the future of grating-based precise displacement measurement technology wherein the the development trend of its high precision, high resolution, high robustness, miniaturization, multi-dimension and multi-technological fusion are revealed.

     

  • loading
  • [1]
    吕强, 李文昊, 巴音贺希格, 等.基于衍射光栅的干涉式精密位移测量系统[J].中国光学, 2017, 10(1):39-50. http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml

    LV Q, LI W H, BAYANHESHIG, et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1):39-50.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml
    [2]
    尚平.高精度衍射光栅干涉位移传感器及关键技术研究[D].合肥: 合肥工业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10359-1012522187.htm

    SHANG P. Study on the key technology of high-resolution diffraction grating interferometric transducer of linear displacements[D]. Hefei: Hefei University of Technology, 2012.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10359-1012522187.htm
    [3]
    刘焱, 王烨.位移传感器的技术发展现状与发展趋势[J].自动化技术与应用, 2013, 32(6):76-80, 101. http://d.old.wanfangdata.com.cn/Periodical/hljzdhjsyyy201306020

    LIU Y, WANG Y. Present status and trend of technical development of displacement sensor[J]. Techniques of Automation & Applications, 2013, 32(6):76-80, 101.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hljzdhjsyyy201306020
    [4]
    江孝伟, 武华.一维增透亚波长光栅的研究[J].发光学报, 2017, 38(2):177-181 http://d.old.wanfangdata.com.cn/Periodical/fgxb201702008

    JIANG X W, WU H. Research of 1D sub-wavelength grating anti-reflection[J]. Chinese Journal of Luminescence, 2017, 38(2):177-181.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201702008
    [5]
    刘桂香, 林海, 庞伟秀, 等.掺杂Sm2O3的向列相液晶TEB30A光栅衍射特性研究[J].液晶与显示, 2018, 33(10):851-856. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201810005

    LIU G X, LIN H, PANG W X, et al.. Diffraction characteristics of nematic liquid crystal TEB30A grating doped with Sm2O3[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(10):851-856.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201810005
    [6]
    李文昊, 姜岩秀, 吴娜, 等.极紫外波段变栅距光栅刻槽密度变化及光谱分辨能力分析[J].发光学报, 2015, 36(9):1094-1099. http://d.old.wanfangdata.com.cn/Periodical/fgxb201509025

    LI W H, JIANG Y X, WU N, et al.. Analysis for groove density and spectral resolution of varied-line-space gratings in EUV spectrum[J]. Chinese Journal of Luminescence, 2015, 36(9):1094-1099.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201509025
    [7]
    张爽, 朱万彬, 李健, 等.激光位移传感器传感探头微小型光学系统设计[J].中国光学, 2018, 11(6):1001-1010. http://www.chineseoptics.net.cn/CN/abstract/abstract9561.shtml

    ZHANG SH, ZHU W Q, LI J, et al.. Design of micro-optical system for laser displacement sensor sensing probe[J]. Chinese Optics, 2018, 11(6):1001-1010.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9561.shtml
    [8]
    李秋顺, 向栋, 陈超, 等.单端面长周期光栅透射模式测量技术[J].发光学报, 2017, 38(8):1090-1096. http://d.old.wanfangdata.com.cn/Periodical/fgxb201708016

    LI Q SH, XIANG D, CHEN CH, et al.. Transmission mode measurement technique of long period grating based on a single end face[J]. Chinese Journal of Luminescence, 2017, 38(8):1090-1096.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201708016
    [9]
    乔静, 谢生, 毛陆虹, 等.吸收增强的光栅型金属-半导体-金属光电探测器的优化设计[J].发光学报, 2018, 39(3):363-368. http://d.old.wanfangdata.com.cn/Periodical/fgxb201803016

    QIAO J, XIE SH, MAO L H, et al.. Optimum design of silicon-based metal-semiconductor-metal photodetector with subwavelength metal grating[J]. Chinese Journal of Luminescence, 2018, 39(3):363-368.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201803016
    [10]
    王国超, 颜树华, 高雷, 等.光栅干涉位移测量技术发展综述[J].激光技术, 2010, 34(5):661-664, 716. doi: 10.3969/j.issn.1001-3806.2010.05.023

    WANG G CH, YAN SH H, GAO L, et al.. Development of displacement measurement technologies based on grating interferometry[J]. Laser Technology, 2010, 34(5):661-664, 716.(in Chinese) doi: 10.3969/j.issn.1001-3806.2010.05.023
    [11]
    李琳.基于光栅衍射光干涉的位移测量技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2010. http://ir.ciomp.ac.cn/handle/181722/27122?mode=full&submit_simple=Show+full+item+record

    LI L. Displacement measuring technology based on diffractive light of grating interference[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2010.(in Chinese) http://ir.ciomp.ac.cn/handle/181722/27122?mode=full&submit_simple=Show+full+item+record
    [12]
    楚兴春.纳米光栅干涉位移测量关键技术的研究[D].长沙: 国防科学技术大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-90002-2006127533.htm

    CHU X CH. Research on key technologies of nanometer displacement measurement by grating interferometry[D]. Changsha: National University of Defense Technology, 2005.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-90002-2006127533.htm
    [13]
    WEI CH H, YAN SH H, LIN C B, et al.. Compact grating displacement measurement system with a 3×3 coupler[J]. Chinese Optics Letters, 2015, 13(5):051301. doi: 10.3788/COL201513.051301
    [14]
    HSU C C, CHEN H, TSENG H Y, et al.. High displacement resolution encoder by using triple grating combination interferometer[J]. Optics & Laser Technology, 2018, 105:221-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31e584916bdd0278b6136fdab3de4ca3
    [15]
    苏东风, 续志军.基于反射式三光栅光学系统的金属光栅编码器[J].红外与激光工程, 2008, 7(S1):84-86. http://d.old.wanfangdata.com.cn/Conference/6571260

    SU D F, XU ZH J. Metal grating encoder based on three-grating reflection optical system[J]. Infrared and Laser Engineering, 2008, 37(S1):84-86.(in Chinese) http://d.old.wanfangdata.com.cn/Conference/6571260
    [16]
    HSIEH H L, PAN S W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J]. Optics Express, 2015, 23(3):2451-2465. doi: 10.1364/OE.23.002451
    [17]
    夏豪杰.高精度二维平面光栅测量系统及关键技术研究[D].合肥: 合肥工业大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10359-2006073398.htm

    XIA H J. Research on precise 2-D plane grating measurement system and key technology[D]. Hefei: Hefei University of Technology, 2006.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10359-2006073398.htm
    [18]
    HSU C C, KAO M CH, HUANG K C, et al.. Reflection type displacement sensor with volume hologram for in-plane displacement measurement[C]. Proceedings of 2012 International Conference on Measurement, Information and Control, IEEE, 2012: 13-16.
    [19]
    LIN J, GUAN J, WEN F, et al.. High-resolution and wide range displacement measurement based on planar grating[J]. Optics Communications, 2017, 404:132-138. doi: 10.1016/j.optcom.2017.03.012
    [20]
    WEI P P, LU X, QIAO D CH, et al.. Two-dimensional displacement measurement based on two parallel gratings[J]. Review of Scientific Instruments, 2018, 89(6):065105. doi: 10.1063/1.5024637
    [21]
    LEE J Y, JIANG G A. Displacement measurement using a wavelength-phase-shifting grating interferometer[J]. Optics Express, 2013, 21(21):25553-25564. doi: 10.1364/OE.21.025553
    [22]
    GUO D M, YU Y G, KONG L W, et al.. Self-mixing grating interferometer with dual laser diodes for sensing of 2-D dynamic displacement[J]. IEEE Journal of Quantum Electronics, 2018, 54(4):7500106. https://ieeexplore.ieee.org/document/8450048
    [23]
    LI H, ZHOU CH H, WANG SH Q, et al.. Two-dimensional gold matrix method for encoding two-dimensional optical arbitrary positions[J]. Optics Express, 2018, 26(10):12742-12754. doi: 10.1364/OE.26.012742
    [24]
    HSIEH H L, PAN S W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry[J]. Applied Optics, 2013, 52(27):6840-6848. doi: 10.1364/AO.52.006840
    [25]
    孔令胜, 王天聪, 蔡盛, 等.基于二维方孔光栅的平面三维显示[J].液晶与显示, 2010, 25(6):919-924. doi: 10.3969/j.issn.1007-2780.2010.06.029

    KONG L SH, WANG T C, CAI SH, et al.. Flat-panel 3D display based on 2D square hole barrier[J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(6):919-924.(in Chinese) doi: 10.3969/j.issn.1007-2780.2010.06.029
    [26]
    LIU B SH, YUAN Y B, YIN ZH H. Research and design on orthogonal diffraction grating-based 3D nanometer displacement sensor[J]. Proceedings of SPIE, 2017, 10458:1045818. doi: 10.1117/12.2285042.short?SSO=1
    [27]
    XIAO F, ZHAO R, SUN P. Three-dimensional displacement measurement based on the combination of digital image correlation and optical flow[J]. Applied Optics, 2016, 55(29):8207-8212. doi: 10.1364/AO.55.008207
    [28]
    王磊杰, 张鸣, 朱煜, 等.超精密外差利特罗式光栅干涉仪位移测量系统[J].光学 精密工程, 2017, 25(12):2975-2985. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201712001

    WANG L J, ZHANG M, ZHU Y, et al.. A displacement measurement system for ultra-precision heterodyne Littrow grating interferometer[J]. Opt. Precision Eng., 2017, 25(12):2975-2985.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201712001
    [29]
    陈航.外差式光栅粗/细位移测量系统的研究[D].哈尔滨: 哈尔滨工业大学, 2017.

    CHEN H. Research on heterodyne grating displacement measurement system with high/low displacement resolution[D]. Harbin: Harbin Institute of Technology, 2017.(in Chinese)
    [30]
    彭东林, 刘成康, 谭为民.时空坐标转换理论与时栅位移传感器研究[J].仪器仪表学报, 2000, 21(4):338-342. doi: 10.3321/j.issn:0254-3087.2000.04.003

    PENG D L, LIU CH K, TAN W M. Study on the theory of time-space coordinate transformation and the time grating displacement sensor[J]. Chinese Journal of Scientific Instrument, 2000, 21(4):338-342.(in Chinese) doi: 10.3321/j.issn:0254-3087.2000.04.003
    [31]
    HSU C C, CHEN H, CHIANG C W, et al.. Dual displacement resolution encoder by integrating single holographic grating sensor and heterodyne interferometry[J]. Optics Express, 2017, 25(24):30189-30202. doi: 10.1364/OE.25.030189
    [32]
    HSIEH H L, CHEN W. Heterodyne Wollaston laser encoder for measurement of in-plane displacement[J]. Optics Express, 2016, 24(8):8693-8707. doi: 10.1364/OE.24.008693
    [33]
    LEE J Y, LU M P, LIN K Y, et al.. Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry[J]. Applied Optics, 2012, 51(8):1095-1100. doi: 10.1364/AO.51.001095
    [34]
    彭东林, 付敏, 陈锡侯, 等.典型位移传感器分类研究与时栅传感器特点分析[J].机械工程学报, 2018, 54(10):36-42. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201810006

    PENG D L, FU M, CHEN X H, et al.. Classification study on typical displacement sensors and analysis on the characteristics of time grating sensors[J]. Journal of Mechanical Engineering, 2018, 54(10):36-42.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201810006
    [35]
    CHEN Z R, PU H J, LIU X K, et al.. A time-grating sensor for displacement measurement with long range and nanometer accuracy[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(11):3105-3115. doi: 10.1109/TIM.2015.2437633
    [36]
    彭凯, 于治成, 刘小康, 等.单排差动结构的新型纳米时栅位移传感器[J].仪器仪表学报, 2017, 38(3):734-740. doi: 10.3969/j.issn.0254-3087.2017.03.028

    PENG K, YU ZH CH, LIU X K, et al.. Novel nanometer time-grating displacement sensor with single row differential structure[J]. Chinese Journal of Scientific Instrument, 2017, 38(3):734-740.(in Chinese) doi: 10.3969/j.issn.0254-3087.2017.03.028
    [37]
    LI M W, GENG H, WU Q N, et al.. Application of double metal/dielectric gratings in optical displacement detection[J]. Applied Optics, 2018, 57(13):3438-3443. doi: 10.1364/AO.57.003438
    [38]
    PU H J, LIU H ZH, LIU X K, et al.. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution[J]. Mechanical Systems and Signal Processing, 2018, 104:705-715. doi: 10.1016/j.ymssp.2017.11.017
    [39]
    HILL K O, FUJⅡ Y, JOHNSON D C, et al.. Photosensitivity in optical fiber waveguides:application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10):647-649. doi: 10.1063/1.89881
    [40]
    李丽.光纤光栅位移传感系统关键技术的研究[D].天津: 天津大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10056-2008181712.htm

    LI L. Study on key techniques of fiber Bragg grating displacement sensoring[D]. Tianjin: Tianjin University, 2007.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-2008181712.htm
    [41]
    LI T L, SHI CH Y, REN H L. A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution[J]. IEEE Photonics Technology Letters, 2017, 29(14):1199-1202. doi: 10.1109/LPT.2017.2712602
    [42]
    谭跃刚, 陈宇佳, 李瑞亚, 等.高精度弓型光纤光栅微位移传感器[J].光学 精密工程, 2018, 26(3):556-564. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201803006

    TAN Y G, CHEN Y J, LI R Y, et al.. High-precision bow-shaped fiber Bragg grating micro-displacement sensors[J]. Opt. Precision Eng., 2018, 26(3):556-564.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201803006
    [43]
    徐东升.一种新型光纤光栅局部位移计在小应变测量中的应用[J].岩土工程学报, 2017, 39(7):1330-1335. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201707020

    X43D SH. New fiber Bragg grating sensor-based local displacement transducer for small strain measurements of soil specimens[J]. Chinese Journal of Geotechnical Engineering , 2007, 39(7):1330-1335.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201707020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(4236) PDF downloads(712) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return