Volume 12 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
LIU Cong, DONG Wen-fei, JIANG Ke-ming, ZHOU Wu-ping, ZHANG Tao, LI Hai-wen. Recognition of dense fluorescent droplets using an improved watershed segmentation algorithm[J]. Chinese Optics, 2019, 12(4): 783-790. doi: 10.3788/CO.20191204.0783
Citation: LIU Cong, DONG Wen-fei, JIANG Ke-ming, ZHOU Wu-ping, ZHANG Tao, LI Hai-wen. Recognition of dense fluorescent droplets using an improved watershed segmentation algorithm[J]. Chinese Optics, 2019, 12(4): 783-790. doi: 10.3788/CO.20191204.0783

Recognition of dense fluorescent droplets using an improved watershed segmentation algorithm

Funds:

the National Key Scientific Instrument and Equipment Development Project 2017YFF0108604

More Information
  • Corresponding author: LI Hai-wen, E-mail:lihw@sibet.ac.cn
  • Received Date: 28 Sep 2018
  • Rev Recd Date: 16 Nov 2018
  • Publish Date: 01 Aug 2019
  • Fluorescent droplet images acquired during droplet digital Polymerase Chain Reaction(PCR) detection have dense distribution, low brightness and low contrast, resulting in poor recognition accuracy. In order to correctly identify densely distributed fluorescent droplets, a fluorescent droplet recognition method based on an improved watershed segmentation algorithm is proposed. First, the image is preprocessed using histogram equalization and Gauss filtering, then the local adaptive threshold segmentation method is used to extract the targets from the background, thereby reducing the dependence on image gray level information. Finally, the algorithm combines the prior knowledge of the droplets with a circular and uniform size to define the droplet adhesion function, which reduces the error rate in the watershed segmentation. The experiment results show that compared with the traditional distance-based watershed segmentation method, the accuracy of the proposed algorithm is 97.34%, which is higher than the 85.9% accuracy of its counterpart.

     

  • loading
  • [1]
    VOGELSTEIN B, KINZLER K W. Digital PCR[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16):9236-9241. doi: 10.1073/pnas.96.16.9236
    [2]
    彭年才.数字PCR:原理、技术及应用[M].北京:科学出版社, 2017.

    PENG N C. Digital PCR:Theory, Technology & Application[M]. Beijing:Science Press, 2017.(in Chinese)
    [3]
    SOLIMAN K. Cell Profiler:novel automated image segmentation procedure for super-resolution microscopy[J]. Biological Procedures Online, 2015, 17:11. doi: 10.1186/s12575-015-0023-9
    [4]
    CLARKE M L, BURTON R L, HILL A N, et al.. Low-cost, high-throughput, automated counting of bacterial colonies[J]. Cytometry, 2010, 77A(8):790-797. doi: 10.1002/cyto.a.20864
    [5]
    GEISSMANN Q. Open CFU, a new free and open-source software to count cell colonies and other circular objects[J]. PLoSOne, 2013, 8(2):e54072. doi: 10.1371/journal.pone.0054072
    [6]
    CHOUDHRY P. High-throughput method for automated colony and cell counting by digital image analysis based on edge detection[J]. PLoSOne, 2016, 11(2):e0148469. doi: 10.1371/journal.pone.0148469
    [7]
    王浩, 张叶, 沈宏海, 等.图像增强算法综述[J].中国光学, 2017, 10(4):438-448. http://www.chineseoptics.net.cn/CN/abstract/abstract9522.shtml

    WANG H, ZHANG Y, SHEN H H, et al.. Review of image enhancement algorithms[J]. Chinese Optics, 2017, 10(4):438-448.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9522.shtml
    [8]
    但唐仁, 田景全, 高延军, 等.低强度X射线影像系统的噪声分析及图像去噪处理[J].发光学报, 2002, 23(6):615-618. doi: 10.3321/j.issn:1000-7032.2002.06.017

    DAN T R, TIAN J Q, GAO Y J, et al.. Imaging filter and noise analyse based on low intense X-ray image system[J]. Chinese Journal of Luminescence, 2002, 23(6):615-618.(in Chinese) doi: 10.3321/j.issn:1000-7032.2002.06.017
    [9]
    杨名宇, 李刚.利用区域信息的航拍图像分割[J].中国光学, 2014, 7(5):779-785. http://www.chineseoptics.net.cn/CN/abstract/abstract9170.shtml

    YANG M Y, LI G. Aerial image segmentation with region information[J]. Chinese Optics, 2014, 7(5):779-785.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9170.shtml
    [10]
    张永梅, 巴德凯, 邢阔.基于模糊阈值的自适应图像分割方法[J].计算机测量与控制, 2016, 24(4):126-128, 136. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201604038

    ZHANG Y M, BA D K, XING K. A method of fuzzy threshold for adaptive image segmentation[J]. Computer Measurement & Control, 2016, 24(4):126-128, 136.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201604038
    [11]
    BRESSON X, ESEDOGLU S, VANDERGHEYNST P, et al.. Fast global minimization of the active contour/snake model[J]. Journal of Mathematical Imaging and Vision, 2007, 28(2):151-167. doi: 10.1007/s10851-007-0002-0
    [12]
    VINCENT L, SOILLE P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6):583-598. doi: 10.1109/34.87344
    [13]
    SOILLE P. Morphological image analysis applied to crop field mapping[J]. Image and Vision Computing, 2000, 18(13):1025-1032. doi: 10.1016/S0262-8856(00)00043-3
    [14]
    刘聪, 董文飞, 张涛, 等.微滴式数字PCR中低浓度荧光微滴分类[J].光学 精密工程, 2018, 26(3):647-653. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201803017

    LIU C, DONG W F, ZHANG T, et al.. Identification of florescent droplets at low concentrations for droplet digital PCR[J]. Opt. Precision Eng., 2018, 26(3):647-653.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201803017
    [15]
    游迎荣, 范影乐, 庞全.基于距离变换的粘连细胞分割方法[J].计算机工程与应用, 2005, 41(20):206-208. doi: 10.3321/j.issn:1002-8331.2005.20.061

    YOU Y R, FAN Y L, PANG Q. Separate algorithm for overlapping cell images based on distance transformation[J]. Computer Engineering and Applications, 2005, 41(20):206-208.(in Chinese) doi: 10.3321/j.issn:1002-8331.2005.20.061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(2123) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return