Volume 12 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
YE Yu-jie, KE Shao-ying, WU Jin-Yong, LI Cheng, CHEN Song-yan. Design and research of Ge/Si avalanche photodiode with a specific lateral carrier collection structure[J]. Chinese Optics, 2019, 12(4): 833-842. doi: 10.3788/CO.20191204.0833
Citation: YE Yu-jie, KE Shao-ying, WU Jin-Yong, LI Cheng, CHEN Song-yan. Design and research of Ge/Si avalanche photodiode with a specific lateral carrier collection structure[J]. Chinese Optics, 2019, 12(4): 833-842. doi: 10.3788/CO.20191204.0833

Design and research of Ge/Si avalanche photodiode with a specific lateral carrier collection structure

Funds:

National Natural Science Foundation of China 61534005

More Information
  • Corresponding author: CHEN Song-yan, E-mail:sychen@xmu.edu.cn
  • Received Date: 07 Jan 2019
  • Rev Recd Date: 06 Mar 2019
  • Publish Date: 01 Aug 2019
  • In order to achieve infrared photodetectors with high gain, low noise, and high 3 dB-bandwidth(3 dB-BW) for low-loss and high-efficiency fiber communication, many researchers have paid attention to the Ge/Si avalanche photodiode(APD) which is regarded as a potential photoelectric device for the detection of infrared light. In this paper, we propose and theoretically study a potential structure of a Ge/Si APD with a specific lateral carrier collection structure. The influence on the electric field distribution of the doping concentration of the top Si layer, the size of the gap between heavily-doped n-Si and the Ge/Si mesa, and the thickness of the top Si layer thickness have been considered. It was found that the doping concentration of Si multiplication significantly affects the junction effect of the vertical p+-i-p--n- junction and lateral n+-n- junction, which in turn affects the distribution of the electric field. Furthermore, the reason for the high 3 dB-BW is also clarified by studying the carrier transportation. This feature is explained by the high carrier velocity in the direction of carrier collection induced by the fringing electric field formed by the lateral n+-n- and vertical p+-i-p--n- junction structure. It was found that the migration path of carriers in our lateral collection APD is along the edge of the Ge mesa and turns to the lateral direction in the Si layer. This is very different from the vertical migration path in a traditional SACM Ge/Si APD. We researched and found that an extremely low dark current can be obtained using an oxide-free Ge/Si direct wafer bond. A high 3 dB-bandwidth of~20 GHz was achieved under an optical input power of -30 dBm at 1 310 nm. Such a high 3 dB-bandwidth is demonstrated using the specific lateral carrier collection structure of this APD.

     

  • loading
  • [1]
    GUO Q S, POSPISCHIL A, BHUIYAN M, et al.. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 2016, 16(7):4648-4655. doi: 10.1021/acs.nanolett.6b01977
    [2]
    MIAO J SH, HU W D, GUO N, et al.. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8):936-942. doi: 10.1002/smll.201402312
    [3]
    逯丹凤, 刘瑞鹏, 祁志美.基于多层膜敏感圆片的光学式有机磷快速检测方法[J].分析化学, 2011, 39(6):934-938. http://d.old.wanfangdata.com.cn/Periodical/fxhx201106031

    LU D F, LIU R P, QI ZH M. An optical method for rapid detection of organophosphates based on multilayer-disc sensing element[J]. Chinese Journal of Analytical Chemistry, 2011, 39(6):934-938.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201106031
    [4]
    张维冰, 王智聪, 张凌怡.超高效液相色谱-光电二极管阵列检测-串联四级杆质谱法测定红洋葱中黄酮醇及其糖苷类化合物[J].分析化学, 2014, 42(3):415-422. http://d.old.wanfangdata.com.cn/Periodical/fxhx201403018

    ZHANG W B, WANG ZH C, ZHANG L Y. Determination of flavonols and flavonol glycosides in red onion by ultra high performance liquid chromatography-photodiode array detection-tandem quadrupole mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(3):415-422.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201403018
    [5]
    MARTINEZ N J D, GEHL M, DEROSE C T, et al.. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode[J]. Optics Express, 2017, 25(14):16130-16139. doi: 10.1364/OE.25.016130
    [6]
    WOODSON M E, REN M, MADDOX S J, et al.. Low-noise AlInAsSb avalanche photodiode[J]. Applied Physics Letters, 2016, 108(8):081102. doi: 10.1063/1.4942372
    [7]
    WEN J, WANG W J, CHEN X R, et al.. Origin of large dark current increase in InGaAs/InP avalanche photodiode[J]. Journal of Applied Physics, 2018, 123(16):161530. doi: 10.1063/1.4999646
    [8]
    TU J J, ZHAO Y L, WEN K, et al.. The determination of unity gain for InGaAs/InP avalanche photodiodes with excess noise measurements[J]. IEEE Photonics Technology Letters, 2017, 29(8):671-674. doi: 10.1109/LPT.2017.2676028
    [9]
    HE D Y, WANG SH, CHEN W, et al.. Sine-wave gating InGaAs/InP single photon detector with ultralow after pulse[J]. Applied Physics Letters, 2017, 110(11):111104. doi: 10.1063/1.4978599
    [10]
    MA Y J, ZHANG Y G, GU Y, et al.. Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors[J]. Optics Express, 2016, 24(7):7823-7834. doi: 10.1364/OE.24.007823
    [11]
    YIN D D, YANG X H, HE T T, et al.. InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits[J]. Journal of Optical Technology, 2017, 84(5):350-354. doi: 10.1364/JOT.84.000350
    [12]
    CHEN H T, VERBIST J, VERHEYEN P, et al.. High sensitivity 10 Gb/s Si photonic receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector[J]. Optics Express, 2015, 23(2):815-822. doi: 10.1364/OE.23.000815
    [13]
    VIROT L, CROZAT P, FÉDÉLI J M, et al..Germanium avalanche receiver for low power interconnects[J]. Nature Communications, 2014, 5:4957. doi: 10.1038/ncomms5957
    [14]
    MICHELJ, LIU J F, KIMERLING L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8):527-534. doi: 10.1038/nphoton.2010.157
    [15]
    SAMAVEDAM S B, CURRIE M T, LANGDO T A, et al.. High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers[J]. Applied Physics Letters, 1998, 73(15):2125-2127. doi: 10.1063/1.122399
    [16]
    KE SH Y, YE Y J, LIN SH M, et al.. Low-temperature oxide-free silicon and germanium wafer bonding based on a sputtered amorphous Ge[J]. Applied Physics Letters, 2018, 112(4):041601. doi: 10.1063/1.4996800
    [17]
    KE SH Y, YE Y J, WU J Y, et al..Interface characteristics and electrical transport of Ge/Si heterojunction fabricated by low-temperature wafer bonding[J]. Journal of Physics D:Applied Physics, 2018, 51(26):265306. doi: 10.1088/1361-6463/aac7b0
    [18]
    KE SH Y, LIN SH M, YE Y J, et al..Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Gelayer[J]. Journal of Physics D:Applied Physics, 2017, 50(40):405305. doi: 10.1088/1361-6463/aa81ee
    [19]
    DUAN N, LIOW T Y, LIM E J, et al.. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection[J]. Optics Express, 2012, 20(10):11031-11036. doi: 10.1364/OE.20.011031
    [20]
    ZAOUI W S, CHEN H W, BOWERS J E, et al..Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product[J]. Optics Express, 2009, 17(15):12641-12649. doi: 10.1364/OE.17.012641
    [21]
    KANG Y M, LIU H D, MORSE M, et al..Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 2009, 3(1):59-63. doi: 10.1038/nphoton.2008.247
    [22]
    SELBERHERR S. Analysis and Simulation of Semiconductor Devices[M]. Vienna:Springer, 1984.
    [23]
    HUANG SH H, LI CH, ZHOU ZH W, et al.. Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template[J]. Thin Solid Films, 2012, 520(6):2307-2310. doi: 10.1016/j.tsf.2011.09.023
    [24]
    ZHOU ZH W, HE J K, WANG R CH, et al.. Normal incidence p-i-n Geheterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition[J]. Optics Communications, 2010, 283(18):3404-3407. doi: 10.1016/j.optcom.2010.04.098
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(2653) PDF downloads(1142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return