Volume 13 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
WANG Xiao-yang, LIU Li-juan. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441. doi: 10.3788/CO.2020-0028
Citation: WANG Xiao-yang, LIU Li-juan. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441. doi: 10.3788/CO.2020-0028

Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources

doi: 10.3788/CO.2020-0028
Funds:  Supported by Project of Major Scientific Instruments by National Natural Science Foundation of China(No. 21527804)
More Information
  • Corresponding author: xywang@mail.ipc.ac.cn
  • Received Date: 24 Feb 2020
  • Rev Recd Date: 30 Mar 2020
  • Publish Date: 01 Jun 2020
  • All-solid-state deep ultraviolet coherent light sources have important applications in frontier science, high technology and many other fields. An effective and feasible technical approach is to use commercially available visible and near-infrared all-solid-state lasers as the fundamental frequency light source to generate a deep ultraviolet laser through cascaded frequency conversion using nonlinear optical crystals. This paper reviews the research progress of deep ultraviolet nonlinear optical crystals and all-solid-state deep ultraviolet coherent light sources. Taking KBBF crystals as the representative example, their discovery, crystal growth, corresponding prism-coupled device technology, main optical properties, and ability to generate deep ultraviolet coherent light are each introduced. It was proven that KBBF crystals are excellent nonlinear optical crystals that can achieve deep ultraviolet laser output through direct frequency doubling. The applications of deep ultraviolet coherent light sources based on KBBF crystals and prism-coupled technology are discussed, with special focus given to ultra-high resolution photoelectron spectrometers. Finally, the future direction of the development of deep ultraviolet nonlinear optical crystals and all-solid-state deep ultraviolet laser technology are given.

     

  • loading
  • [1]
    柴燕, 毕勇, 颜博霞, 等. 全球激光显示技术专利分布格局与态势分析[J]. 液晶与显示,2011,26(3):329-333. doi: 10.3788/YJYXS20112603.0329

    CHAI Y, BI Y, YAN B X et al. Distribution pattern and trend analysis on global laser display technology[J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(3): 329-333. (in Chinese) doi: 10.3788/YJYXS20112603.0329
    [2]
    李继军, 聂晓梦, 甄威, 等. 显示技术比较及新进展[J]. 液晶与显示,2018,33(1):74-84. doi: 10.3788/YJYXS20183301.0074

    LI J J, NIE X M, ZEN W, et al. New developments and comparisons in display technology[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(1): 74-84. (in Chinese) doi: 10.3788/YJYXS20183301.0074
    [3]
    FRANKEN P A, HILL A E, PETERS C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-120. doi: 10.1103/PhysRevLett.7.118
    [4]
    BASS M, FRANKEN P A, HILL A E, et al. Optical mixing[J]. Physical Review Letters, 1962, 8(1): 18. doi: 10.1103/PhysRevLett.8.18
    [5]
    WOODBURY E J, NG W K. Ruby laser operation in the near IR[J]. Proceedings of IRE, 1962, 50(11): 2367.
    [6]
    GIORDMAINE J A, MILLER R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976. doi: 10.1103/PhysRevLett.14.973
    [7]
    BLOEMBERGEN N. Nonlinear Optics[M]. New York: Benjamin, 1965.
    [8]
    CHEN C T. Development of New NLO Crystals in the Borate Series[M]. Switzerland: Plenum Press, 1993.
    [9]
    CHEN CH T, WU B CH, JIANG A D, et al. A new-type ultraviolet SHG crystal—β-BaB2O4[J]. Science in China Series B, 1985, 28(3): 235-243.
    [10]
    CHEN CH T, WU Y CH, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 1989, 6(4): 616-621. doi: 10.1364/JOSAB.6.000616
    [11]
    王丽荣, 张国春, 冯景程, 等. La2CaB10O19晶体高效紫外激光输出研究[J]. 发光学报,2020,41(2):140-145. doi: 10.3788/fgxb20204102.0140

    WANG L R, ZHANG G C, FENG J CH, et al. Highly efficient UV laser output of La2CaB10O19 crystal[J]. Chinese Journal of Luminescence, 2020, 41(2): 140-145. (in Chinese) doi: 10.3788/fgxb20204102.0140
    [12]
    崔建丰, 高涛, 张亚男, 等. 瓦级激光二极管端面抽运351 nm紫外激光器[J]. 发光学报,2016,37(11):1367-1371. doi: 10.3788/fgxb20163711.1367

    CUI J F, GAO T, ZHANG Y N, et al. Watt-class laser diode end-pumped 351 nm ultraviolet laser[J]. Chinese Journal of Luminescence, 2016, 37(11): 1367-1371. (in Chinese) doi: 10.3788/fgxb20163711.1367
    [13]
    尼科戈相(俄). 非线性光学晶体: 一份完整的总结[M]. 王继扬, 译. 北京: 高等教育出版社, 2009.

    NIKOGOSYAN D N. Nonlinear Optical Crystals: A Complete Survey[M]. WANG J Y, trans. Beijing: Higher Education Press, 2009. (in Chinese)
    [14]
    PETROV V, ROTERMUND F, NOACK F. Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8·4H2O[J]. Electronics Letters, 1998, 34(18): 1748-1750. doi: 10.1049/el:19981223
    [15]
    PETROV V, ROTERMUND F, NOACK F, et al. Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm[J]. Journal of Applied Physics, 1998, 84(11): 5887-5892. doi: 10.1063/1.368904
    [16]
    JONES-BEY H. Deep-UV applications await improved nonlinear optics[J]. Laser Focus World, 1998, 34(8): 127-131.
    [17]
    何奇, 樊君, 胡晓云, 等. NaYF4: Er3+的水热合成及其紫外上转换发光性能[J]. 发光学报,2012,33(2):122-127. doi: 10.3788/fgxb20123302.0122

    HE Q, FAN J, HU X Y, et al. Hydrothermal synthesis and its ultraviolet up conversion light emitting property[J]. Chinese Journal of Luminescence, 2012, 33(2): 122-127. (in Chinese) doi: 10.3788/fgxb20123302.0122
    [18]
    KURTZ S K, PERRY T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968, 39(8): 3798-3813. doi: 10.1063/1.1656857
    [19]
    SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-Ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648. doi: 10.1021/jacs.7b05943
    [20]
    WANG X F, WANG Y, ZHANG B B, et al. CsB4O6F: A congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units[J]. Angewandte Chemie International Edition, 2017, 56(45): 14119-14123. doi: 10.1002/anie.201708231
    [21]
    PENG G, YE N, LIN ZH SH, et al. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57(29): 8968-8972. doi: 10.1002/anie.201803721
    [22]
    CHEN CH T, WANG G L, WANG X Y, et al. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications[J]. Applied Physics B, 2009, 97(1): 9-25. doi: 10.1007/s00340-009-3554-4
    [23]
    CHEN CH T, LUO S Y, WANG X Y, et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2[J]. Journal of the Optical Society of America B, 2009, 26(8): 1519-1525. doi: 10.1364/JOSAB.26.001519
    [24]
    CHEN CH T, WU Y CH, LI R K. The development of new NLO crystals in the borate series[J]. Journal of Crystal Growth, 1990, 99(1-4): 790-798. doi: 10.1016/S0022-0248(08)80028-0
    [25]
    CHEN CH T, WU Y CH, LI R K. The relationship between the structural type of anionic group and SHG effect in boron-oxygen compounds[J]. Chinese Physics Letters, 1985, 2(9): 389-392. doi: 10.1088/0256-307X/2/9/002
    [26]
    FRENCH R H, LING J W, OHUCHI F S, et al. Electronic structure of β-BaB2O4 and LiB3O5 nonlinear optical crystals[J]. Physical Review B, 1991, 44(16): 8496-8502. doi: 10.1103/PhysRevB.44.8496
    [27]
    LI R K. The interpretation of UV absorption of borate glasses and crystals[J]. Journal of Non-Crystalline Solids, 1989, 111(2-3): 199-204. doi: 10.1016/0022-3093(89)90281-0
    [28]
    BATSANOVA L R, EGOROV V A, NIKOLEVA, A V. Beryllium fluoroborate[J]. Dokl. Akad. Nauk SSSR, 1968, 178: 1317-1319.
    [29]
    CHEN CH T, WANG Y B, XIA Y N, et al. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach[J]. Journal of Applied Physics, 1995, 77(6): 2268-2272. doi: 10.1063/1.358814
    [30]
    XIA Y N, CHEN CH T, TANG D Y, et al. New nonlinear optical crystals for UV and VUV harmonic generation[J]. Advanced Materials, 1995, 7(1): 79-81. doi: 10.1002/adma.19950070118
    [31]
    CHEN CH T, XU Z Y, DENG D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 1996, 68(21): 2930-2932. doi: 10.1063/1.116358
    [32]
    WANG J Y, ZHANG CH Q, LIU Y G, et al. Growth and properties of KBe2BO3F2 crystal[J]. Journal of Materials Research, 2003, 18(10): 2478-2485. doi: 10.1557/JMR.2003.0345
    [33]
    WANG X Y, YAN X, LUO S Y, et al. Flux growth of large KBBF crystals by localized spontaneous nucleation[J]. Journal of Crystal Growth, 2011, 318(1): 610-612. doi: 10.1016/j.jcrysgro.2010.11.176
    [34]
    YE N, TANG D Y. Hydrothermal growth of KBe2BO3F2 crystals[J]. Journal of Crystal Growth, 2006, 293(2): 233-235. doi: 10.1016/j.jcrysgro.2006.05.038
    [35]
    MCMILLEN C D, KOLIS J W. Hydrothermal crystal growth of ABe2BO3F2 (A=K, Rb, Cs, Tl) NLO crystals[J]. Journal of Crystal Growth, 2008, 310(7-9): 2033-2038. doi: 10.1016/j.jcrysgro.2007.11.193
    [36]
    ZHOU H T, HE X L, ZHOU W N, et al. Hydrothermal growth of KBBF crystals from KOH solution[J]. Journal of Crystal Growth, 2011, 318(1): 613-617. doi: 10.1016/j.jcrysgro.2010.08.036
    [37]
    YU J Q, LIU L J, JIN SH F, et al. Superstructure and stacking faults in hydrothermal-grown KBe2BO3F2 crystals[J]. Journal of Solid State Chemistry, 2011, 184(10): 2790-2793. doi: 10.1016/j.jssc.2011.08.025
    [38]
    SANG Y H, YU D H, AVDEEV M, et al. X-ray and neutron diffraction studies of flux and hydrothermally grown nonlinear optical material KBe2BO3F2[J]. CrystEngComm, 2012, 14(18): 6079-6084. doi: 10.1039/c2ce25828e
    [39]
    CHEN CH T, LÜ J H, WANG G L, et al. Deep ultraviolet harmonic generation with KBe2BO3F2 crystal[J]. Chinese Physics Letters, 2001, 18(8): 1081. doi: 10.1088/0256-307X/18/8/327
    [40]
    CHEN CH T, WANG G L, WANG X Y, et al. Improved sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal[J]. IEEE Journal of Quantum Electronics, 2008, 44(7): 617-621. doi: 10.1109/JQE.2008.920324
    [41]
    NAKAZATO T, ITO I, KOBAYASHI Y, et al. Phase-matched frequency conversion below 150 nm in KBe2BO3F2[J]. Optics Express, 2016, 24(15): 17149-17158. doi: 10.1364/OE.24.017149
    [42]
    LI R K, WANG L R, WANG X Y, et al. Dispersion relations of refractive indices suitable for KBe2BO3F2 crystal deep-ultraviolet applications[J]. Applied Optics, 2016, 55(36): 10423-10426. doi: 10.1364/AO.55.010423
    [43]
    DAI SH B, CHEN M, ZHANG SH J, et al. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd: YAG laser in KBBF[J]. Laser Physics Letters, 2016, 13(3): 035401. doi: 10.1088/1612-2011/13/3/035401
    [44]
    CHEN CH T, WATANABE S, XU Z Y, et al.. Recent advances of deep and vacuum-UV harmonic generation with new borate crystals[C]. Proceedings of Conference on Lasers and Electro-Optics, IEEE, Maryland, USA. 2003: 814-816.
    [45]
    ZHANG X, WANG ZH M, WANG G L, et al. Widely tunable and high-average-power fourth-harmonic generation of a Ti: sapphire laser with a KBe2BO3F2 prism-coupled device[J]. Optics Letters, 2009, 34(9): 1342-1344. doi: 10.1364/OL.34.001342
    [46]
    XU B, LIU L J, WANG X Y, et al. Generation of high power 200 mW laser radiation at 177.3 nm in KBe2BO3F2 crystal[J]. Applied Physics B, 2015, 121(4): 489-494. doi: 10.1007/s00340-015-6260-4
    [47]
    KANAI T, WANG X Y, ADACHI S, et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device[J]. Optics Express, 2009, 17(10): 8696-8703. doi: 10.1364/OE.17.008696
    [48]
    SCHOLZ M, OPALEVS D, LEISCHING P, et al. A bright continuous-wave laser source at 193 nm[J]. Applied Physics Letters, 2013, 103(5): 051114. doi: 10.1063/1.4817786
    [49]
    中国科学院理化技术研究所, 物理研究所. 一种非线性光学晶体激光变频耦合器: 中国, CN1172411C[P]. 2004-10-20.

    Technical Institute of Physics and Chemistry CAS, Institute of Physics CAS. Prism-nonlinear optical crystal coupler for laser frequency conversion: CN, ZL01115313.X[P]. 2004-10-20. (in Chinese)
    [50]
    XU Z Y, ZHANG SH J, ZHOU X J, et al. Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy[J]. Frontiers of Information Technology &Electronic Engineering, 2019, 20(7): 885-913.
    [51]
    KISS T, KANETAKA F, YOKOYA T, et al. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor[J]. Physical Review Letters, 2005, 94(5): 057001. doi: 10.1103/PhysRevLett.94.057001
    [52]
    MENG J Q, LIU G D, ZHANG W T, et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor[J]. Nature, 2009, 462(7271): 335-338. doi: 10.1038/nature08521
    [53]
    BOK J M, BAE J J, CHOI H Y, et al. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates[J]. Science Advances, 2016, 2(3): e1501329. doi: 10.1126/sciadv.1501329
    [54]
    FENG Y, LIU D F, FENG B J, et al. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14656-14661. doi: 10.1073/pnas.1613434114
    [55]
    ZHANG Y, WANG CH L, YU L, et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5[J]. Nature Communications, 2017, 8: 15512. doi: 10.1038/ncomms15512
    [56]
    LIU D F, LI C, HUANG J W, et al. Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor[J]. Physical Review X, 2018, 8(3): 031033. doi: 10.1103/PhysRevX.8.031033
    [57]
    CYRANOSKI D. Materials science: China’s crystal cache[J]. Nature, 2009, 457(7232): 953-955. doi: 10.1038/457953a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views(4465) PDF downloads(377) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return