Volume 13 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LV Qiang, WANG Wei, LIU Zhao-wu, SONG Ying, JIANG Shan, LIU Lin, BAYANHESHIG, LI Wen-hao. Grating-based precision measurement system for five-dimensional measurement[J]. Chinese Optics, 2020, 13(1): 189-202. doi: 10.3788/CO.20201301.0189
Citation: LV Qiang, WANG Wei, LIU Zhao-wu, SONG Ying, JIANG Shan, LIU Lin, BAYANHESHIG, LI Wen-hao. Grating-based precision measurement system for five-dimensional measurement[J]. Chinese Optics, 2020, 13(1): 189-202. doi: 10.3788/CO.20201301.0189

Grating-based precision measurement system for five-dimensional measurement

doi: 10.3788/CO.20201301.0189
Funds:

Supported by National Natural Science Foundation of China No.61905245

Jilin Province Science & Technology Development Program Project No.20190303019SF

Jilin Province Science & Technology Development Program Project No.20190103158JH

R & D projects in key areas of Guangdong Province No.2019B010144001

More Information
  • Author Bio:

    LV Qiang(1992—),Male, from Dezhou, Shandong, Ph,D. and is mainly engaged in diffraction grating and precision measurement,E-mail:lq_0119@126.com

  • Corresponding author: LI Wen-hao, E-mail:liwh@ciomp.ac.cn
  • Received Date: 05 Mar 2019
  • Rev Recd Date: 28 Apr 2019
  • Publish Date: 01 Feb 2020
  • To realize large range, high precision and multi-dimensional measurement with a relatively simple structure, a grating-based precise measurement system is designed for five-dimensional measurement including simultaneous measurement of displacement and angle. Based on symmetrical Littrow structure and heterodyne interference principle, two-dimensional displacement measurement along grating's vector direction and normal direction is realized by using one-dimensional diffraction grating with high groove density. What's more, the angle errors of pitch, yaw and roll of grating are measured by using high precision position sensitive detectors considering the angular variation between ±1st order diffraction light and grating. Experimental results indicate that the proposed grating-based precision measurement system can achieve high precision and large range displacement measurement with resolution better than 4 nm. It can also realize high precision angle error measurement with resolution better than 1″. Moreover, because the displacement measurement range is only limited by the size of grating, its measuring range is greatly increased. The grating-based precision measurement system is very important for high precision measurement of displacement and angle in the field of precision measurement.

     

  • loading
  • [1]
    MALINAUSKAS M, ŽUKAUSKAS A, HASEGAWA S, et al.. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 2016, 5(8): e16133. http://cn.bing.com/academic/profile?id=239014bfba62c6c76ee4a8ba0164c6a7&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    URNESS A C, MOORE E D, KAMYSIAK K K, et al.. Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput[J]. Light: Science & Applications, 2013, 2(3): e56. http://cn.bing.com/academic/profile?id=fc6f15f2d51a403e591f169c2b90714a&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    SUGIOKA K, CHENG Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149. http://cn.bing.com/academic/profile?id=4fbfbe6c047a9e26acc6b3e36ccf3030&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    敬世美, 张轩宇, 梁居发, 等.飞秒激光刻写的超短光纤布拉格光栅及其传感特性[J].中国光学, 2017, 10(4): 449-454. http://www.chineseoptics.net.cn/CN/abstract/abstract9528.shtml

    JING SH M, ZHANG X Y, LIANG J F, et al.. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics[J]. Chinese Optics, 2017, 10(4): 449-454. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9528.shtml
    [5]
    陈宝刚, 明名, 吕天宇.大口径球面反射镜曲率半径的精确测量[J].中国光学, 2014, 7(1): 163-168. http://www.chineseoptics.net.cn/CN/abstract/abstract9111.shtml

    CHEN B G, MING M, LV T Y. Precise measurement of curvature radius for spherical mirror with large aperture[J]. Chinese Optics, 2014, 7(1): 163-168. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9111.shtml
    [6]
    LOU Y T, YAN L P, CHEN B Y, et al.. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology[J]. Optics Express, 2017, 25(6): 6805-6821. doi: 10.1364/OE.25.006805
    [7]
    ZHANG E ZH, CHEN B Y, ZHENG H, et al.. Laser heterodyne interferometer with rotational error compensation for precision displacement measurement[J]. Optics Express, 2018, 26(1): 90-98. doi: 10.1364/OE.26.000090
    [8]
    吕强, 李文昊, 巴音贺希格, 等.基于衍射光栅的干涉式精密位移测量系统[J].中国光学, 2017, 10(1): 39-50. http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml

    LV Q, LI W H, BAYANHESHIG, et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1): 39-50. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml
    [9]
    ESTLER W T. High-accuracy displacement interferometry refin air[J]. Applied Optics, 1985, 24(6): 808-815. doi: 10.1364/AO.24.000808
    [10]
    GERASIMOV F M. Use of diffraction gratings for controlling a ruling engine[J]. Applied Optics, 1967, 6(11): 1861-1865. doi: 10.1364/AO.6.001861
    [11]
    HSIEH H L, CHEN J C, LERONDEL G, et al.. Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer[J]. Optics Express, 2011, 19(10): 9770-9782. doi: 10.1364/OE.19.009770
    [12]
    CHUNG Y CH, FAN K C, LEE B C. Development of a novel planar encoder for 2D displacement measurement in nanometer resolution and accuracy[C]. Proceedings of the 2011 9th World Congress on Intelligent Control and Automation, IEEE, 2011: 449-453. https://www.researchgate.net/publication/241187504_Development_of_a_novel_planar_encoder_for_2D_displacement_measurement_in_nanometer_resolution_and_accuracy
    [13]
    GAO W, KIMURA A. A three-axis displacement sensor with nanometric resolution[J]. CIRP Annals, 2007, 56(1): 529-532. doi: 10.1016/j.cirp.2007.05.126
    [14]
    KIMURA A, GAO W, KIM W, et al.. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering, 2012, 36(4): 576-585. doi: 10.1016/j.precisioneng.2012.04.005
    [15]
    LU Y C, WEI CH L, JIA W, et al.. Two-degree-freedom displacement measurement based on a short period grating in symmeric Littrow configuration[J]. Optics Communications, 2016, 380: 382-386. https://www.sciencedirect.com/science/article/abs/pii/S0030401816305132
    [16]
    ŠIAUDINYTE · L, MOLNAR G, KÖNING R, et al.. Multi-dimensional grating interferometer based on fibre-fed measurement heads arranged in Littrow configuration[J]. Measurement Science and Technology, 2018, 29(5): 054007. doi: 10.1088/1361-6501/aaa8b4
    [17]
    LV Q, LIU ZH W, WANG W, et al.. Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement[J]. Applied Optics, 2018, 57(31): 9455-9463. doi: 10.1364/AO.57.009455
    [18]
    LIU C H, HUANG H L, LEE H W. Five-degrees-of-freedom diffractive laser encoder[J]. Applied Optics, 2009, 48(14): 2767-2777. doi: 10.1364/AO.48.002767
    [19]
    GAO W, SAITO Y, MUTO H, et al.. A three-axis autocollimator for detection of angular error motions of a precision stage[J]. CIRP Annals, 2011, 60(1): 515-518. doi: 10.1016/j.cirp.2011.03.052
    [20]
    LI X H, GAO W, MUTO H, et al.. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering, 2013, 37(3): 771-781. doi: 10.1016/j.precisioneng.2013.03.005
    [21]
    TEIMEL A. Technology and applications of grating interferometers in high-precision measurement[J]. Precision Engineering, 1992, 14(3): 147-154. doi: 10.1016-0141-6359(92)90003-F/
    [22]
    周炳琨, 高以智, 陈倜嵘, 等.激光原理[M]. 6版.北京:国防工业出版社, 2009.

    ZHOU B K, GAO Y ZH, CHEN T R, et al.. Laser Principle[M]. 6th ed. Beijing: National Defend Industry Press, 2009. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article views(2035) PDF downloads(75) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return