Atomic coherence is the result of interaction between light and materials, which leads to many important physical phenomenon. Currently, most experimental researches on atomic coherence are reported in atomic gases. Compared with atomic gases, the related experimental researches in solid materials have more practical applications. This paper introduces the recent research progress of atomic coherence in solid-state materials in detail, including the Electromagnetically Induced Transparency(EIT) in solid materials, light velocity reduction and coherent storage, controllable eraser of optical storage information, all-optical route based on optical storage, optical velocity reduction and reversible storage of double light pulses and enhanced four-wave mixing based on atomic coherence, it also discusses its application to relative fields.