The development of flexure hinges with large deflection, low stress, small parasitic center shift has always been a difficult problem. On the basis of some foreign flexure hinges, this paper designed a new kind of flexure hinge by using a V shape structure, symmetric layout and the superposition principle. The concept design theory of this flexure hinge was analyzed, and a mathematic model was established to analyze its performance. Analyzed results show that the length of flexure part for the hinge has increased and its parasitic center shift and maximal stress have decreased. Finite element method indicates that its maximal deflection is about 16°, maximal parasitic center shift is 3.557 μm, and maximal stress is 499.8 MPa, respectively, which meets the requirement of design target and the results prove that this flexure hinge has a good quality in practices.