Volume 3 Issue 5
Nov.  2010
Turn off MathJax
Article Contents
QI Xiao-dong, YE Shu-juan, ZHANG Nan, QIN Li, WANG Li-jun. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese Optics, 2010, 3(5): 415-431.
Citation: QI Xiao-dong, YE Shu-juan, ZHANG Nan, QIN Li, WANG Li-jun. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese Optics, 2010, 3(5): 415-431.

Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes

  • Received Date: 11 May 2010
  • Rev Recd Date: 13 Jul 2010
  • Publish Date: 25 Oct 2010
  • The principles and structures of Surface-emitting Distributed-feedback Bragg(SE-DFB) semiconductor lasers, especially curved-grating coupled SE-DFB lasers, are described, then, their characteristics are discussed and compared with that of other semiconductors. It points out that the SE-DFB lasers based on special diffractive characteristics of curved grating can achieve the mode control and two-dimensional leaky-mode coupling of laser arrays, and can obtain the laser with narrow line width(typically 0.08 nm), small divergence angle(typically 0.5 mrad), high brightness(3 W(CW) near-diffraction limit emitting from a single device) and high power(73 W maximum in a single device and kW level in arrays). After reviewing the development, present status and new opportunities in future of the SE-DFB devices, it emphasizes that as the curved-grating coupled SE-DFB has both strengths from side emitting and surface emitting devices, it will have great research significance and wide application prospect by introducing into semiconductor lasers and arrays with different material systems and structures.

     

  • loading
  • [1] MACOMBER S H,MOTT J S,NOLL R J. Surface-emitting distributed feedback semiconductor laser[J]. Appl. Phys. Lett.,1987,17(7):472-474. [2] MOTT J S,MACOMBER S H. Two-dimensional surface emitting distributed feedback kaser arrays[J]. IEEE Photonics Technol. Lett.,1989,1(8):202-204. [3] AKKAPEDDI P,MACOMBER S H. Surface emitting distributed feedback laser as a source for laser radar[J]. SPIE,1991,1416:44-50. [4] KASRAIAN M,BOTEZ D. Anti-phase complex-coupled, surface-emitting distributed-feedback diode laser[J]. SPIE,1997,3001:55-62. [5] MACOMBER S H,MOTT J S,SCHWARTZ B D,et al.. Curved-grating, surface-emitting DFB lasers and arrays[J]. SPIE,1997,3001:42-45. [6] LI S. High-coherent-power, two-dimensional grating surface-emitting(GSE) semiconductor lasers . Madison:Unversity of Wisconsin-Madison,2006. [7] OVERTON G. Semiconductor lasers:curved grating creates high-brightness surface-emitting DFB laser[J]. Laser Focus World,2009,45(4):35-36. [8] BOTEZ D. High-power monolithic single-mode diode lasers employing active photonic lattices[J]. SPIE,2003,4993:20-22. [9] WITJAKSONO G,LI S J J L,BOTEZ D. Single-lobe,surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase shift[J]. Appl. Phys. Lett.,2003,83(23):5365-5367. [10] LOPEZ J,WITJAKSONO G,BOTEZ D. Single-mode, single-lobe operation of surface-emitting, second-order distributed feedback lasers[J]. Appl. Phys. Lett.,1999,75(7):885-887. [11] 李宜峰. 两段式DFB半导体激光器模式及双稳特性研究 . 成都:西南交通大学 ,2002. LI Y F. Investigation on mode characteristics of two-segment DFB lasers . Chengdu:Southwest Jiaotong University,2002. [12] GHAFOURI-SHIRAZ H. Distributed Feedback Laser Diodes and Optical Tunable Filters[M]. New Jersey:Wiley,2003. [13] LI X F,YU S F,MEMBER S. Static and dynamic modeling of circular grating-coupled distributed feedback lasers[J]. IEEE J. Quantum Electronics,2008,44(8):770-776. [14] SUN X K,YARIV A. Surface-emitting circular DFB, disk- and ring-Bragg resonator lasers with chirped gratings:a unified theory and comparative study[J]. Optics Express,2008,16(12):9155-9164. [15] SUN X K,YARIV A. Surface-emitting circular DFB, disk-, and ring-Bragg resonator lasers with chirped gratings. II:nonuniform pumping and far-field patterns[J]. Opt. Express,2009,17(1):1-6. [16] SUN X K,YARIV A. Surface-emitting circular DFB, disk-, and ring-Bragg resonator lasers with chirped gratings III:gain saturation effects and above-threshold analysis[J]. Opt. Express,2009,17(12):10119-10125. [17] WITJAKSONO G,LI S,LEE J J,et al.. Single-lobe, surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase shift[J]. Appl. Phys. Lett.,2003,83(23):5365-5367. [18] NESNIDAL M,MAWST L,BOTEZ D. Distributed-feedback grating used lateral-mode selector in phase-locked antiguided arrays[J]. IEEE Photonics Technol. Lett.,1997,9(1):34-36. [19] KASRAIAN M,BOTEZ D. Metal-grating-outcoupled,surface-emitting distributed-feedback diode lasers[J]. Appl. Phys. Lett.,1996,69(10):2795-2797. [20] GOLSHANI A,LOCK A,FREISLEBEN S. Adjustable surface emission from AlGaAs/GaAs laser diodes based on first-order-grating coupled surface mode emission[J]. Appl. Phys. Lett.,1996,69(16):2312-2314. [21] BOTEZ D,CENTER T,BEACH R. High-power monolithic phase-locked arrays of antiguided semiconductor diode lasers[J]. IEE Proceedings J Optoelectronics,1992,139(1):14-23. [22] KANSKAR M,BRUNET F. Surface-emitting laser array .Photonics Spectra,2009. http://www.ventureinvestors.com/archives/1628. [23] KOGELNIK H,SHANK C. Coupled-wave theory of distributed feedback lasers[J]. J. Appl. Phys.,1972,43(5):2327-2335. [24] NAKAMURA M,AIKI K,UMEDA J,et al.. cw operation of distributed-feedback GaAs/GaAlAs diode lasers at temperatures up to 300 K[J]. Appl. Phys. Lett.,1975,27(1):403-405. [25] WEYERS M,BHATTACHARYA A,BUGGE F,et al. Epitaxy of high-power diode-laser structures[J]. Topics Appl. Phys.,2000,78:83-120. [26] SODA H,IGA K,KITAHARA C,et al.. GaInAsP/InP surface emitting injection lasers[J]. Jpn J Appl. Phys.,1979,18(12):2329-2330. [27] SODA H,MOTEGI Y,IGA K. GaInAsP/InP surface emitting injection lasers "with short cavity length"[J]. IEE J. Quantum Electron.,1983,QE-19(6):1035-1041.. [28] IGA K,ISHIKAWA S,OHKOUCHI S,et al. Room-temperature pulsed oscillation of GaAlAs/GaAs surface emitting injection laser[J]. Appl. Phys. Lett.,1984,45:348-350. [29] HECHT J. Surface-emitters take on high power[J]. Laser Focus World,2005,41(5):143-147. [30] WELCH D,PARKE R,HARDY A,et al. Low-threshold grating-coupled surface-emitting lasers[J]. Appl. Phys. Lett.,1989,55:813-815. [31] MAKINO T. Spontaneous emission model of surface-emitting DFB semiconductorlasers[J]. IEEE J. Quantum Electron.,1993,29(1):14-22. [32] NG W,HONG C-S,YARIV A. Holographic interference litho-graphy for integrated optics[J]. IEEE Trans On Electron Devices,1978,25(10):1193-1200. [33] SCHATTENBURG M,ANDERSON E,SMITH H. X-ray/VUV transmission gratings for astrophysical and laboratory applications[J]. Phys. Scripta,1990,41:13-20. [34] RAO C,CHEETHAM A. Science and technology of nanomaterials:current status and future prospects[J]. J. Mater. Chem.,2001,11(12):2887-2894. [35] HIRAI Y,HARADA S,ISAKA S,et al.. Nano-Imprint lithography using replicated mold by Ni electroforming[J]. Jpn J. Appl. Phys.,2002,1(41):4186-4189. [36] SREENIVASAN S,WILLSON C,SCHUMAKER N,et al.. Low-cost nanostructure patterning using step and flash imprint lithography[J]. SPIE,2002,4608:187-194. [37] SHAO D,CHEN S. Surface-plasmon-assisted nanoscale photolithography by polarized light[J]. Appl. Phys. Lett.,2005,86(25):253107. [38] NAKAYAMA Y,OKAZAKI S,SAITOU N,et al. Electron-beam cell projection lithography:a new high-throughput electron-beam direct-writing technology using a specially tailored Si aperture[J]. J. Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1990,8:1836-1840. [39] LOHAU J,FRIEDRICHOWSKI S,DUMPICH G,et al.. Electron-beam lithography with metal colloids:direct writing of metallic nanostructures[J]. J. Vacuum Science & Technol. B:Microelectronics and Nanometer Structures,1998,16:77-79. [40] Van KAN J,BETTIOL A,WATT F. Three-dimensional nanolithography using proton beam writing[J]. Appl. Phys.,Lett.,2003,83:1629-1631. [41] SANZ D,RORISON J,YU S. InGaN/GaN MQW Laser Diodes with 4th Order FIB-etched Gratings[J]. Quantum Electronics and Laser Science,2005,2:1023-1025. [42] CAMPBELL S. The Science and Engineering of Microelectronic Fabrication[M]. New York:Oxford University Press,1996. [43] PEASE R,CHOU S. Lithography and other patterning techniques for future electronics[J]. IEEE,2008,96(2):248-250. [44] ERDOGAN T,HALL D. Circularly symmetric distributed feedback semiconductor laser:an analysis[J]. Appl. Phys.,1990,68:1435-1444. [45] ERDOGAN T,KING O,WICKS G,et al.. Circularly symmetric operation of a concentric-circle-grating,surface-emitting,AlGaAs/GaAs quantum-well semiconductor laser[J]. Appl. Phys. Lett.,1992,60:1921-1923. [46] FALLAHI M,CHATENOUD F,TEMPLETON I,et al.. Recent developments on InGaAs/GaAs circular-grating distributed Bragg reflector lasers[J]. SPIE,1995,2398:135-141. [47] LARSSON A,HAGBERG M,ERIKSSON N,et al.. Grating coupled surface emitters with enhanced surface emission efficiency[J]. SPIE,1995,2398:21-33. [48] JORDAN R,HALL D. Radiation from concentric-circle grating,surface-emitting planar waveguides:the volume current method[J]. Appl. Phys. Lett.,1994,64:3077-3079. [49] JORDAN R,HALL D. Highly directional surface emission from concentric-circle gratings on planar optical waveguides:the f ield expansion method[J]. J. Opt. Society Am. A,1995,12(1):84-94. [50] JORDAN R,HALL D,KING O,et al.. Lasing behavior of circular grating surface-emitting semiconductor lasers[J]. J. Opt. Society Am. B,1997,14(2):449-453. [51] OLSON C,GREENE P,WICKS G,et al.. High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers[J]. Appl. Phys. Lett.,1998,72:1284-1286. [52] WRIGHT K. Nonlinear dynamics of circular-grating distributed-feedback semiconductor devices[J]. J Opt. Soc. Am. B,1999,16:96-102. [53] LI M,WANG J,ZHUANG L,et al.. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography[J]. Appl. Phys. Lett.,2000,76:673-675. [54] TOVAR A,CLARK G. Concentric-circle-grating,surface-emitting laser beam propagation in complex optical systems[J]. J. Opt. Soc. Am. A,1997,14(12):3333-3340. [55] BOTEZ D,MAWST L,PETERSON G,et al.. Resonant optical transmission and coupling in phase-locked diode laser arrays of antiguides:the resonant optical waveguide array[J]. Appl. Phys. Lett.,1989,54:2183-2185. [56] ZMUDZINSKI C,BOTEZ D,MAWST L. Simple description of laterally resonant,distributed-feedback-like modes of arrays of antiguides[J]. Appl. Phys. Lett.,1992,60:1049-1051. [57] MAWST L,BOTEZ D,ZMUDZINSKI C,et al.. Resonant self-aligned-stripe antiguided diode laser array[J]. Appl. Phys. Lett.,1992,60:668-670. [58] BOTEZ D,MAWST L. Γ effect:key intermodal-discrimination mechanism in arrays of antiguided diode lasers[J]. Appl. Phys. Lett.,1992,60:3096-3098. [59] CHOA F,SHIH M,FAN J,et al.. Very low threshold 1.55 μm grating coupled surface-emitting lasers for optical signal processing and interconnect[J]. Appl. Phys. Lett.,1995,67:2777-2779. [60] FALLAHI M,KASUNIC K J. Design and fabrication of circular grating coupled distributed Bragg reflector lasers[J]. Opt. Eng.,1998,37(4):1169-1174. [61] NESNIDAL M,MAWST L,BOTEZ D,et al.. Lateral-mode selection in phase-locked antiguided arrays via distributed-feedback grating[J]. SPIE,1997,3001:82-86. [62] LOPEZ J,KASRAIAN M,BOTEZ D. Surface-emitting,distributed-feedback diode lasers with uniform near-field intensity profile[J]. Appl. Phys. Lett.,1998,73:2266-2268. [63] BOTEZ D,KASRAIAN M. Single lobe surface emitting complex coupled distributed feedback semiconductor laser:US,5727013 .1998-03-10. [64] YANG H,MAWST LJ,NESNIDAL M,et al.. 10 W near-diffraction-limited peak pulsed power from Al-free,0.98 m-emitting phase-locked antiguided arrays[J]. Electronics Lett.,1997,33(2):136-137. [65] NAPARTOVICH A,BOTEZ D. Analytical theory of phase-locked arrays of antiguided diode lasers[J]. SPIE,1997,2994:600-609. [66] WITJAKSONO G,BOTEZ D. Surface-emitting,single-lobe operation from second-order distributed-reflector lasers with central grating phaseshift[J]. Appl. Phys. Lett.,2001,78:4088-2090. [67] SHUANG L,WITJAKSONO G,MACOMBER S,et al.. Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift[J]. Selected Topics in Quantum Electronics,IEEE J.,2003,9(5):1153-1165. [68] YANG H,MAWST L,BOTEZ D. 1.6 W continuous-wave coherent power from large-index-step (Δn ≈0.1) near-resonant,antiguided diode laser arrays[J]. Appl. Phys. Lett.,2000,76:1219-1221. [69] BOTEZ D. High-power coherent GaAs-based monolithic semiconductor lasers[J]. SPIE,2001,4533:41-46. [70] BOTEZ D. Active photonic lattices for high-coherent-power generation[J]. SPIE,2002,4651:233-237. [71] BOTEZ D. Active photonic lattices:lasers for watt-range coherent-power generation[J]. SPIE,2002,4905:78-84. [72] WITJAKSONO G,LI S,LEE J,et al.. Single-lobe,surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase shift[J]. Appl. Phys. Lett.,2003,83:5365-5367. [73] BOTEZ D. High-power monolithic single-mode diode lasers employing active photonic lattices[J]. SPIE,2003,4993:20-27. [74] BOTEZ D. High-power high-brightness semiconductor lasers[J]. SPIE,2005,5624:203-212. [75] LI S,XU D,BOTEZ D. High power,single-mode operation from photonic-lattice semiconductor lasers with controllable lateral resonance[J]. Appl. Phys. Lett.,2006,88(9):091112. [76] LI S,BOTEZ D. Analysis of 2-D surface-emitting ROW-DFB semiconductor lasers for high-power single-mode operation[J]. IEEE J. Quantum Electronics,2007,43(8):655-668. [77] DENTE G C. Low confinement factors for suppressed filaments in semiconductor lasers[J]. IEEE J. Quantum Electron.,2001,37(12):1650-1653. [78] MACOMBER S. Design of high-power,surface-emitting DFB lasers for suppression of filamentation[J]. SPIE,2003,4993:37-49. [79] LI S,BOTEZ D. Design for high-power single-mode operation from 2-D surface-emitting ROW-DFB lasers[J]. IEEE Photonics Technology Lett.,2005,17(3):519-521. [80] KANSKAR M,CAI J,GALSTAD C,et al.. High power conversion efficiency and wavelength stabilized, narrow bandwidth 975 nm siode laser pumps[J]. SPIE,2006,6216(09):1-7. [81] KANSKAR M,HE Y,CAI J,et al.. 53% wallplug efficiency 975 nm distributed feedback broad area laser[J]. Electronics Lett.,2006,42:1455-1456. [82] Alfalight. Novel Grating Boosts Brightness[M]. Madison:Alfalight Inc. 2009. [83] MODH P,BACKLUND J,BENGTSSON J,et al.. Multifunctional gratings for surface-emitting lasers:design and implementation[J]. Appl. Opt.,2003,42:4847-4854. [84] BARNES W,DEREUX A,EBBESEN T. Surface plasmon subwavelength optics[J]. Nature,2003,424(6950):824-830. [85] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J]. Science,2006,311(5758):189-193. [86] ATWATER H A. The promise of plasmonics[J]. Scientific American,2007,17(3):56-63. [87] EBBESEN T,LEZEC H,GHAEMI H,et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature,1998,391(6668):667-669. [88] OKAMOTO K,NIKI I,SHVARTSER A,et al.. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nature Materials,2004,3(9):601-605. [89] PAIELLA R. Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement[J]. Appl. Phys. Lett.,2005,87(11):111104. [90] VUCKOVIC J,LONCAR M,SCHERER A. Surface plasmon enhanced light-emitting diode[J]. IEEE J. Quantum Electron.,2000,36(10):1131-1144. [91] LIU J,BRONGERSMA M. Omnidirectional light emission via surface plasmon polaritons[J]. Appl. Phys. Lett.,2007,90(9):091116. [92] LEZEC H,DEGIRON A,DEVAUX E,et al.. Beaming light from a subwavelength aperture[J]. Science,2002,297(5582):820-822. [93] MARTIN-MORENO L,GARCIA-VIDAL F,LEZEC H,et al.. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Phys. Rev. Lett.,2003,90(16):167401. [94] GUO B,SONG G,CHEN L. Plasmonic very-small-aperture lasers[J]. Appl. Phys. Lett.,2007,91:021103. [95] CHUANG W,WANG J,YANG C,et al.. Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well[J]. IEEE Photonics Technol. Lett.,2008,20(16):1339-1341. [96] LIU H,LALANNE P. Microscopic theory of the extraordinary optical transmission[J]. Nature,2008,452(7188):728-731. [97] PFLUGL C,AUSTERER M,SCHRENK W,et al.. Single-mode surface-emitting quantum-cascade lasers[J]. Appl. Phys. Lett.,2005,86(21):211102. [98] SCHRENK W,FINGER N,GIANORDOLI S,et al.. Surface-emitting distributed feedback quantum-cascade lasers[J]. Appl. Phys. Lett.,2000,77(14):2086-2088. [99] GMACHL C,CAPASSO F,FAIST J,et al.. Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ≈ 8.5 μm[J]. Appl. Phys. Lett.,1998,72:1430-1432. [100] NAMJOU K,CAI S,WHITTAKER E,et al.. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser[J]. Opt. Lett.,1998,23(3):219-221. [101] YU J S,SLIVKEN S,DARVISH S R,et al.. High-power,room-temperature,and continuous-wave operation of distributed-feedback quantum-cascade lasers at lambda ~4.8 μm[J]. Appl. Phys. Lett.,2005,87(4):041104. [102] XING Q,LI S,TIAN Z,et al.. Enhanced zero-order transmission of terahertz radiation pulses through very deep metallic gratings with subwavelength slits[J]. Appl. Phys. Lett.,2006,89:041107. [103] YU N,CUBUKCU E,DIEHL L,et al.. Bowtie plasmonic quantum cascade laser antenna[J]. Opt. Express,2007,15(20):13272-13281. [104] YU N,CUBUKCU E,DIEHL L,et al.. Plasmonic quantum cascade laser antenna[J]. Appl. Phys. Lett.,2007,91:173113. [105] YU N,FAN J,WANG Q,et al.. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nature Photonics,2008,2(9):564-570. [106] YU N,BLANCHARD R,FAN J,et al.. Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators[J]. Appl. Phys. Lett.,2008,93:181101. [107] CAPASSO F,YU N,CUBUKCU E,et al.. Using plasmonics to shape light beams[J]. Opt. Photonics News,20(5):22-27. [108] TZALLAS P,SKANTZAKIS E,KALPOUZOS C,et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields[J]. Nature Phys.,2007,3(12):846-850. [109] HAURI C,KORNELIS W,HELBING F,et al.. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation[J]. Appl. Phys. B:Lasers and Optics,2004,79(6):673-677. [110] ANTOSIEWICZ T,WR Bel P,SZOPLIK T. Nanofocusing of radially polarized light with dielectric-metal-dielectric probe[J]. Opt. Express,2009,17:9191-9196. [111] BAIDA F,BELKHIR A. Superfocusing and light confinement by surface plasmon excitation through radially polarized beam[J]. Plasmonics,2009,4(1):51-59. [112] VOGEL M. Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves . Queensland:Queensland University of Technology,2009. [113] JORGE B,MARIN S. A unified picture of laser physics[J]. Science,2008,320(5876):623-624. [114] TURECI H,GE L,ROTTER S,et al.. Strong interactions in multimode random lasers[J]. Science,2008,320(5876):643-646. [115] CHEN S,QIAN B,CHEN K,et al.. Conformal coverage for two-dimensional arrays of microcavites with quasi-three dimensional confinement by distributed Bragg reflectors[J]. Appl. Surface Sci.,2007,253(9):4254-4259. [116] PEDACI F,BARLAND S,CABOCHE E,et al.. All-optical delay line using semiconductor cavity solitons[J]. Appl. Phys. Lett.,2008,92(1):011101. [117] GARCIA-VIDAL F,MORENO E. Lasers go nano[J]. Nature,2009,461(7264):604-605. [118] NOGINOV M,ZHU G,BELGRAVE A,et al.. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460(7259):1110-1112. [119] OULTON R,SORGER V,ZENTGRAF T,et al.. Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461(7264):629-632. [120] CAUSA F,MASANOTTI D. Observation and analysis of phase-locking in parabolic bow-tie laser arrays[J]. IEEE J. Quantum Electron.,2006,42(10):1016-1022. [121] CAUSA F,MASANOTTI D. High brightness index-guided parabolic bow-tie laser arrays[J]. IEEE Photonics Technol. Lett.,2004,16(9):2000-2002. [122] MASANOTTI D,CAUSA F. Optical guiding properties of high-brightness parabolic bow-tie laser arrays[J]. IEEE J. Quantum Electronics,2005,41(7):909-916. [123] MASANOTTI D,CAUSA F,SARMA J. High brightness,index-guided parabolic bow-tie laser diodes[J]. IEE Proceedings-Optoelectronics,2004,151:123-128. [124] STREIFER W,HARDY A,BURNHAM R,et al.. Single-lobe phased-array diode lasers[J]. Electronics Lett.,1985,21(3):118-120. [125] STREIFER W,WELCH D,CROSS P,et al.. Y-junction semiconductor laser arrays:Part I-Theory[J]. IEEE J. Quant Electron,1987,23(6):744-751. [126] STREIFER W,BURNHAM R D,SCIFRES D R. Radiation losses in distributed feedback lasers and longitudinal mode selection[J]. IEEE J. Quantum Electron.,1976,QE-13:154-161. [127] SCIFRES D,STREIFER W,BURNHAM R. Experimental and analytic studies of coupled multiple stripe diode lasers[J]. IEEE J. Quantum Electron.,1979,15(9):917-922. [128] MILTON A,BURNS W. Mode coupling in optical waveguide horns[J]. IEEE J. Quantum Electron.,1977,13(10):828-835. [129] BUTLER J,ACKLEY D,BOTEZ D. Coupled-mode analysis of phase-locked injection laser arrays[J]. Appl. Phys. Lett.,1984,44(14):293-295. [130] BOTEZ D,SCIFRES D. Diode Laser Arrays[M]. Cambridge:Cambridge Univ Press,1994. [131] WELCH D,STREIFER W,CROSS P,et al.. Y-Junction semiconductor laser arrays:Part II--Experiments[J]. IEEE J. Quantum Electron.,1987,23(6):752-756. [132] ELARDE V,TOBIN K,PRICE R,et al.. Curved waveguide array diode lasers for high-brightness applications[J]. IEEE Photonics Technol. Lett.,2008,20(13):1085-1087.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(5784) PDF downloads(2843) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return