留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腔衰荡光谱仪器腔镜微缺陷散射模型

任颐杰 张正涛

任颐杰, 张正涛. 腔衰荡光谱仪器腔镜微缺陷散射模型[J]. 中国光学(中英文), 2025, 18(5): 1143-1154. doi: 10.37188/CO.2024-0094
引用本文: 任颐杰, 张正涛. 腔衰荡光谱仪器腔镜微缺陷散射模型[J]. 中国光学(中英文), 2025, 18(5): 1143-1154. doi: 10.37188/CO.2024-0094
REN Yi-jie, ZHANG Zheng-tao. Scattering model for micro-defects on cavity mirrors in cavity ring-down spectroscopy instruments[J]. Chinese Optics, 2025, 18(5): 1143-1154. doi: 10.37188/CO.2024-0094
Citation: REN Yi-jie, ZHANG Zheng-tao. Scattering model for micro-defects on cavity mirrors in cavity ring-down spectroscopy instruments[J]. Chinese Optics, 2025, 18(5): 1143-1154. doi: 10.37188/CO.2024-0094

腔衰荡光谱仪器腔镜微缺陷散射模型

cstr: 32171.14.CO.2024-0094
基金项目: 新一代人工智能国家科技重大专项(No. 2022ZD0119400)
详细信息
    作者简介:

    任颐杰(1994—),男,山西长治人,博士,助理研究员,2018 年于长春理工大学获得学士学位,2023年于中国科学院长春光学精密机械与物理研究所获得光学工程博士学位,中国科学院自动化研究所工业视觉与智能装备技术工程实验室助理研究员,主要从事腔衰荡光谱技术、微纳光学、工业视觉技术等方面的研究。E-mail:yijie.ren@ia.ac.cn

    张正涛(1981—),山东烟台人,博士,研究员,博士生导师,2004年于中国石油大学东营分校获得学士学位,2007年于北京理工大学获得理学硕士学位,2010年于中国科学院自动化研究所获得控制科学与工程博士学位。现为中国科学院工业视觉与智能装备技术工程实验室主任。主要研究方向为工业视觉检测、智能机器人等。E-mail:zhengtao.zhang@ia.ac.cn

  • 中图分类号: O433.1

Scattering model for micro-defects on cavity mirrors in cavity ring-down spectroscopy instruments

Funds: Supported by National Science and Technology Major Project (No. 2022ZD0119400)
More Information
  • 摘要:

    针对腔衰荡光谱仪器(CRDS)中的腔镜微缺陷会导致测量精度下降的问题,本文建立了基于Bobbert Vlieger BRDF 理论的腔镜微缺陷散射模型,分析了微缺陷在不同光源波长、入射角度、缺陷量级、缺陷类型、缺陷密度、基底膜层的散射光特性。腔镜微缺陷散射模型研究表明:微米至亚微米(100 μm~0.1 μm)量级缺陷会降低衰荡吸收精度。针对该量级微缺陷的检测,构建了腔镜微缺陷散射和微缺陷暗场检测的分析模型。CRDS腔镜微缺陷散射光模型的建立与分析,是实现腔镜微缺陷高精度检测和CRDS测量精度恢复的关键技术。

     

  • 图 1  CRDS中腔镜缺陷对阈值建立和衰荡吸收的影响

    Figure 1.  The impact of cavity mirror defects on threshold setting and ring-down absorption in CRDS

    图 2  明场缺陷检测与暗场缺陷检测原理示意图

    Figure 2.  Schematic diagram of the principles for bright-field defect detection and dark-field defect detection

    图 3  腔镜缺陷BRDF散射模型及参数

    Figure 3.  BRDF scattering model and parameters of cavity mirror defects

    图 4  不同入射角度下的散射场空间分布。(a)和(b)为0.1 μm PSL颗粒在75°斜入射和正入射下的空间分布,(c)和(d)为1 μm PSL颗粒在75°斜入射和正入射下的空间分布

    Figure 4.  Spatial distribution of scattering field at different incidence angles. (a)-(b) Spatial distribution of 0.1 μm PSL particles under 75° oblique incidence and normal incidence; (c)-(d) spatial distribution of 1 μm PSL particles under 75° oblique incidence and normal incidence

    图 6  由紫外至红外各典型波长75°斜入射下散射光的空间分布。(a) 266 nm;(b) 355 nm;(c) 490 nm;(d) 633 nm;(e) 808 nm;(f) 1064 nm

    Figure 6.  Spatial distribution of scattered light at various typical wavelengths from UV to IR. (a) 266 nm; (b) 355 nm; (c) 490 nm; (d) 633 nm; (e) 808 nm; (f) 1064 nm

    图 8  不同粒径颗粒75°斜入射下散射光的空间分布。(a) 3 μm;(b) 1 μm;(c) 0.5 μm;(d) 0.1 μm

    Figure 8.  Spatial distribution of scattered light for different particle sizes under 75° oblique incidence. (a) 3 μm; (b) 1 μm; (c) 0.5 μm; (d) 0.1 μm

    图 9  不同粒径75°斜入射下散射光的散射平面分布。(a) 3 μm;(b) 1 μm;(c) 0.5 μm;(d) 0.1 μm

    Figure 9.  Scattering planer distribution of scattered light from particles with different sizes under 75° oblique incidence. (a) 3 μm; (b) 1 μm; (c) 0.5 μm; (d) 0.1 μm

    图 11  不同颗粒密度斜入射时散射光的空间分布。 (a) 10/μm2;(b) 1/μm2;(c) 0.1/μm2;(d) 0.01/μm2

    Figure 11.  Spatial distribution of scattered light for different particle densities under oblique incidence. (a) 10/μm2; (b) 1/μm2; (c) 0.1/μm2; (d) 0.01/μm2

    图 13  不同材质颗粒斜入射时散射光的空间分布。(a) PSL;(b) Au;(c) Cu

    Figure 13.  Spatial distribution of scattered light for different material particles under oblique incidence. (a) PSL; (b) Au; (c) Cu

    图 5  在正入射及斜入射时,微缺陷各散射角的能量分布。蓝色绿色实线和红色虚线分别为75°斜入射和正入射时反射面内不同散射角下半径分别为3 μm、1 μm、0.5 μm、0.1 μm PSL颗粒BRDF

    Figure 5.  The energy distributions of microdefects at each scattering angle under normal and oblique incidences. The lines show the BRDF of PSL particles with radii of 3 μm, 1 μm, 0.5 μm, and 0.1 μm at different scattering angles within the reflective surface. Blue and green solid lines are the BRDF under 75° oblique incidence, and red dashed lines are the BRDF under normal incidence

    图 7  各典型光源波长下75°斜入射时反射面内的BRDF

    Figure 7.  BRDF of the reflective surface at various typical wavelengths under 75° oblique incidence

    图 10  不同粒径大小PSL斜入射时反射面内的BRDF

    Figure 10.  BRDF of the reflective surface for different sizes of PSL particles under oblique incidence

    图 12  反射面内不同颗粒密度斜入射时的BRDF

    Figure 12.  BRDF of particles with different densities in the reflective surface under oblique incidence

    图 14  不同材质颗粒斜入射时反射面内颗粒散射场的BRDF

    Figure 14.  BRDF of the reflective surface for different material particles under oblique incidence

    图 15  基底不同膜层斜入射时反射面内的BRDF

    Figure 15.  BRDF of the reflective surface for different high-reflective coatings on substrates under oblique incidence

    表  1  线偏振光(p光)正入射时,不同缺陷量级腔镜的散射光强度

    Table  1.   Scattered light intensity of cavity mirrors with different defect orders under normal incidence of linearly polarized light (p polarization)

    Particle
    radius/μm
    Scattered light
    intensity/ppm
    s-polarization/
    ppm
    p-polarization/
    ppm
    0.01 7.939×10−11 2.3368×10−12 7.9242×10−11
    0.05 1.2351×10−6 1.9405×10−8 1.2087×10−6
    0.1 3.4466×10−5 1.9143×10−6 3.0221×10−5
    0.5 2.9963×10−3 8.1627×10−4 2.3632×10−3
    1 1.5833×10−2 2.6241×10−3 1.4189×10−2
    下载: 导出CSV
  • [1] 任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 中国光学, 2023, 16(6): 1273-1292. doi: 10.37188/CO.2022-0246

    REN Y J, YAN CH X, XU J W. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 16(6): 1273-1292. (in Chinese). doi: 10.37188/CO.2022-0246
    [2] ANDERSON D Z. Alignment of resonant optical cavities[J]. Applied Optics, 1984, 23(17): 2944-2949. doi: 10.1364/AO.23.002944
    [3] REN Y J, YAN CH X, WU C J, et al. Resonant frequency separation characteristics of the same-order hermite-gaussian mode in the astigmatic triangular cavity of a cavity ring-down spectroscope[J]. IEEE Access, 2022, 10: 53703-53712. doi: 10.1109/ACCESS.2022.3176452
    [4] SONG SH M, HU CH H, YAN CH X. Optical axis maladjustment sensitivity in a triangular ring resonator[J]. Applied Optics, 2019, 58(1): 29-36. doi: 10.1364/AO.58.000029
    [5] LEHMANN K K, BERDEN G, ENGELN R. An Introduction to Cavity Ring-Down Spectroscopy[M]//BERDEN G, ENGELN R. Cavity Ring-Down Spectroscopy: Techniques and Applications. Chichester: Wiley, 2009: 1-26.
    [6] HUANG H, LEHMANN K K. Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy[J]. Applied Physics B, 2009, 94(2): 355-366. doi: 10.1007/s00340-008-3293-y
    [7] MO Z Q, YU J, WANG J D, et al. Differential measurement for cavity ring-down spectroscopy with dynamic allan variance[J]. Journal of Spectroscopy, 2020, 2020(1): 8398063.
    [8] WERLE P. Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence[J]. Applied Physics B, 2011, 102(2): 313-329. doi: 10.1007/s00340-010-4165-9
    [9] 王振, 杜艳君, 丁艳军, 等. 基于傅里叶变换的波长扫描腔衰荡光谱[J]. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062

    WANG ZH, DU Y J, DING Y J, et al. Wavelength-scanned cavity ring down spectroscopy based on Fourier transform[J]. Acta Physica Sinica, 2019, 68(20): 204204. (in Chinese). doi: 10.7498/aps.68.20191062
    [10] 袁峰, 高晶, 姚路, 等. 球载CRDS高灵敏度甲烷测量系统的研制[J]. 光学 精密工程, 2020, 28(9): 1881-1892. doi: 10.37188/OPE.20202809.1881

    YUAN F, GAO J, YAO L, et al. Development of highly sensitive balloon-borne methane measurement system based on cavity ringdown spectroscopy[J]. Opties and Precision Engineering, 2020, 28(9): 1881-1892. (in Chinese). doi: 10.37188/OPE.20202809.1881
    [11] 张锦龙, 王富美, 方圣欢, 等. 超低损耗激光薄膜的散射与机械损耗[J]. 光学 精密工程, 2022, 30(21): 2655-2677. doi: 10.37188/OPE.20223021.2655

    ZHANG J L, WANG F M, FANG SH H, et al. Scattering and mechanical loss of ultra-low loss laser coatings[J]. Optics and Precision Engineering, 2022, 30(21): 2655-2677. (in Chinese). doi: 10.37188/OPE.20223021.2655
    [12] HUANG H F, KEVIN K K. Noise in cavity ring-down spectroscopy caused by transverse mode coupling[J]. Optics Express, 2007, 15(14): 8745-8759. doi: 10.1364/OE.15.008745
    [13] 侯翔宇, 邱腾. 低维光电材料缺陷与界面增强拉曼散射[J]. 中国光学, 2021, 14(1): 170-181. doi: 10.37188/CO.2020-0145

    HOU X Y, QIU T. Defects- and interface-enhanced Raman scattering in low-dimensional optoelectronic materials[J]. Chinese Optics, 2021, 14(1): 170-181. (in Chinese). doi: 10.37188/CO.2020-0145
    [14] REN Y J, LIU L H, YANG H B, et al. Light scattering defects and measurement accuracy in cavity ring-down spectroscopy[J]. Proceedings of SPIE, 2024, 12997: 129971R.
    [15] 杨甬英, 陆春华, 梁蛟, 等. 光学元件表面缺陷的显微散射暗场成像及数字化评价系统[J]. 光学学报, 2007, 27(6): 1031-1038. doi: 10.3321/j.issn:0253-2239.2007.06.015

    YANG Y Y, LU CH H, LIANG J, et al. Microscopic dark-field scattering imaging and digitalization evaluation system of defects on optical devices precision surface[J]. Acta Optica Sinica, 2007, 27(6): 1031-1038. (in Chinese). doi: 10.3321/j.issn:0253-2239.2007.06.015
    [16] NICODEMUS F E. Directional reflectance and emissivity of an opaque surface[J]. Applied Optics, 1965, 4(7): 767-775. doi: 10.1364/AO.4.000767
    [17] 高萍萍, 陆敏, 王治乐, 等. 表面纳米粒子缺陷的偏振散射特性区分[J]. 中国光学, 2020, 13(5): 975-987. doi: 10.37188/CO.2020-0083

    GAO P P, LU M, WANG ZH L, et al. Differentiation of polarization scattering characteristics of surface nanoparticle defects[J]. Chinese Optics, 2020, 13(5): 975-987. (in Chinese). doi: 10.37188/CO.2020-0083
    [18] 葛春晖, 刘妍君, 年福东, 等. 基于半监督度量学习的激光诱导击穿光谱检测白芍中的重金属含量[J]. 分析化学, 2024, 53(4): 1254-1265.

    GE C H, LIU Y J, CHEN M S, et al. Prediction of Wind Turbine Lubricating Oil’s Acid Value by Ordinary Least Square Method Based on Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy Through Higher-Order Derivative Combined with Angular Metric[J]. Chinese Journal of Analytical Chemistry, 2024, 53(4): 1254-1265. (in Chinese).
    [19] 谷艳红, 李凡丁, 陈梦实, 等. 衰减全反射-傅里叶红外光谱高阶导数结合角度量的最小二乘预测风电机组润滑油酸值[J]. 分析化学, 2025, 52(9): 669-679.

    GU Y H, LI F D, NIAN F. Detection of Heavy Metal Content in White Peony by Laser-Induced Breakdown Spectroscopy Combined with Semi-Supervised Metric Learning[J]. Chinese Journal of Analytical Chemistry, 2025, 52(9): 669-679. (in Chinese).
    [20] 李仁, 孙满利, 焦立超, 等. 基于显微衰减全反射傅里叶变换红外光谱的沉船考古木材降解程度判别研究[J]. 分析化学, 2025, 53(6): 967-975.

    LI R, SUN M L, JIAO L C, et al. Research on Discrimination of Degradation Levels in Shipwreck Archaeological Wood Based on Microscale Attenuated Total Reflection Fourier Transform Infrared Spectroscopy[J]. Chinese Journal of Analytical Chemistry., 2025, 53(6): 967-975. (in Chinese).
    [21] 巩蕾, 吴振森. 基片表面微球体纳米级缺陷的光散射分析[J]. 中国激光, 2011, 38(1): 0110001. doi: 10.3788/CJL201138.0110001

    GONG L, WU ZH S. Analysis of light scattering about slightly non-spherical nanoparticles on wafers[J]. Chinese Journal of Lasers, 2011, 38(1): 0110001. (in Chinese). doi: 10.3788/CJL201138.0110001
    [22] BOBBERT P A, VILEGER J. Light scattering by a sphere on a substrate[J]. Physica A: Statistical Mechanics and Its Applications, 1986, 137(1-2): 209-242. doi: 10.1016/0378-4371(86)90072-5
    [23] BOBBERT P A, VILEGER J, GREEF R. Light reflection from a substrate sparsely seeded with spheres - comparison with an ellipsometric experiment[J]. Physica A: Statistical Mechanics and Its Applications, 1986, 137(1-2): 243-257. doi: 10.1016/0378-4371(86)90073-7
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  214
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-24
  • 修回日期:  2024-07-16
  • 网络出版日期:  2024-11-11

目录

    /

    返回文章
    返回