-
摘要:
随着生物荧光技术的迅速发展,对信号传输的精度要求也越来越高。滤光膜作为系统分光的核心器件,其光谱特性直接影响系统的传输精度。本文选用Nb2O5与SiO2作为高低折射率材料,利用高斯变迹函数结合Optilayer膜系软件对多通道负滤光膜进行膜系优化设计。采用电感耦合磁控溅射沉积技术,在D263T基板上研制多通道负滤光膜。通过对膜层敏感度的反演分析,解决了膜厚控制误差对光谱偏移及通带透过率降低的问题。研究了工艺参数对膜层粗糙度的影响因素,通过调节电感耦合等离子源(ICP)功率有效改善膜层表面粗糙度。所研制的多通道负滤光膜在45°入射时,中心波长576 nm、639 nm、690 nm反射带半宽度分别为5 nm、6 nm和7 nm,平均反射率约为98%。透射区545~562 nm,597~624 nm,655~675 nm和708~755 nm范围内,平均透射率达到92%。通过耐环境测试与光谱稳定性测试可知其满足生物荧光系统中多通道负滤光膜的使用要求。
Abstract:With the rapid development of bioluminescence technology, the demand for high-precision signal transmission has increased significantly. As the filter film is the core component of the system, the spectral characteristic of the filter film directly affects the accuracy of signal transmission. In this study, Nb2O5 and SiO2 were selected as high and low refractive index materials, respectively. A multi-channel negative filter was optimized using the Gaussian apodization function and Optilayer software. The filter film was deposited on a D263T substrate using an inductively coupled magnetron sputtering technique. The effect of thickness control errors on spectral shift and passband transmittance was addressed through inverse film sensitivity analysis. The effect of process parameters on film roughness was investigated, and it was found that adjusting the inductively coupled plasma (ICP) power could effectively improve film roughness. When the developed multi-channel negative filter was tested at a 45° angle of incidence, the reflectance half-bandwidths of the center wavelengths of 576 nm, 639 nm, and 690 nm were 5 nm, 6 nm and 7 nm, respectively, with an average reflectance of about 98%. The average transmittance in the transmission ranges of 545−562 nm, 597−624 nm, 655−675 nm, and 708−755 nm was 92%. The multi-channel negative filter successfully passed both the environmental resistance test and the spectral stability test, thus meeting the application requirements of the multi-channel negative filter in the bioluminescence system.
-
图 1 Nb2O5薄膜的特性曲线。(a)不同充氧量膜层透过率曲线;(b)不同ICP功率膜层透过率曲线;(c)不同充氧量及ICP功率膜层折射率曲线;(d) 充氧量为125 mL/min,ICP功率为3 kW膜层光学常数曲线
Figure 1. Characteristic curves of Nb2O5 film. (a) Transmission curves of the film layer with different oxygen charging amounts; (b) transmission curves of the film layer with different ICP powers; (c) refractive index curves of the film layer with different oxygen charging amounts and different ICP powers; (d) optical constant curves of the film layer with an oxygen flow rate of 125 mL/min and an ICP power of 3 kW
图 2 SiO2薄膜的特性曲线。(a)不同充氧量膜层透过率曲线;(b)不同充氧量膜层光学常数曲线;(c)不同靶材功率膜层沉积速率曲线;(d)不同沉积速率膜层光学常数曲线
Figure 2. Characteristic curves of SiO2 film. (a) Transmission curves of the film layer with different oxygen charging amounts; (b) optical constant curves of the film layer with different oxygen charging amounts; (c) deposition rate curves of the film layer with different target powers; (d) optical constant curves of the film layer with different deposition rates
图 9 多通道负滤光膜的特性曲线。(a) 设计与测试光谱曲线;(b) 36~64层的敏感度分布曲线;(c) 随机误差(1%~3%)光谱曲线;(d) 负滤光膜实测光谱曲线
Figure 9. Characteristic curves of multi-channel negative filter film. (a) Design and measurement curves; (b) sensitivity distribution curve for layers 36−64; (c) spectral curve with random errors (1%−3%); (d) measured spectral curve of negative filter film
表 1 多通道负滤光膜光谱参数
Table 1. Spectral parameters of multi-channel negative filter film parameters
Cut-off region of
wavelengthReflection half
band widthTransmissive
regionBoth sides
cut-off region$ {\lambda _{\text{1}}} $@576 nm T<5% 5 nm @545~562 nm T>90% @531~535 nm T<3% $ {\lambda _{\text{2}}} $@639 nm T<5% 6 nm @597~624 nm T>90% @775~785 nm T<3% $ {\lambda _{\text{3}}} $@690 nm T<5% 7 nm @655~675 nm T>90% @708~755 nm T>90% 表 2 高低折射率膜层厚度比所对应的反射带半宽度
Table 2. Half-width of the reflection band corresponding to the high and low refractive-index film thickness ratio
$ x $ $ y $ Half band width /nm 3 0.46 9.4 4 0.41 8.3 5 0.36 7.2 6 0.23 6.5 7 0.18 5.3 表 3 单层膜SiO2与Nb2O5的工艺参数
Table 3. Process parameters for single-layer films of SiO2 and Nb2O5
Material TG1-Nb TG2/TG3-Si ICP1/2 Coating Parameter Power/
kWAr flow/
mL·min−1Power/
kWAr flow/
mL·min−1O2 flow/
mL·min−1Temperature/
°CRate/
nm·s−1Pressure/
PaSiO2 6.0 60 3.0 50 110 130 0.8 9.6×10−4 Nb2O5 6.0 60 3.0 50 125 130 0.4 1.0×10−3 -
[1] 马润泽, 张晓明, 冯帅, 等. 红外光电探测技术研究现状及展望(特邀)[J]. 光子学报, 2021, 50(10): 1004006. doi: 10.3788/gzxb20215010.1004006MA R Z, ZHANG X M, FENG SH, et al. Research status and prospect of infrared photoelectric detection technology(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1004006. (in Chinese). doi: 10.3788/gzxb20215010.1004006 [2] 杨铮, 刘茹. 浅谈体外诊断医疗器械的检测[J]. 中国医疗器械信息, 2013, 19(12): 50-51,62.YANG ZH, LIU R. Brief Discussion of IVD inspection[J]. China Medical Device Information, 2013, 19(12): 50-51,62. (in Chinese). [3] 陈佳鑫, 田秦秦, 何炜. 有机小分子探针对过氧亚硝酸根离子的荧光检测响应机理的研究进展[J]. 分析化学, 2024, 52(2): 166-177.CHEN J S, TIAN Q Q, HE W. Research progress on the mechanism of fluorescent detection response of organic small molecule probes to peroxynitrite radical anion[J]. Analytical Chemistry, 2024, 52(2): 166-177. (in Chinese). [4] 宋超, 陶洪菊, 孙智伟, 等. 碳点荧光传感器检测重金属离子的研究进展[J]. 分析化学, 2024, 52(11): 1640-1650.SONG C, TAO H J, SUN Z W, et al. Progress in the study of carbon dot fluorescent sensor for detecting heavy metal ions[J]. Analytical Chemistry, 2024, 52(11): 1640-1650. (in Chinese). [5] 赵欣雨, 秦作佳, 张晓兵, 等. 近红外二区激活型小分子荧光探针研究进展[J]. 应用化学, 2024, 41(1): 39-59.ZHAO X Y, QIN Z J, ZHANG X B, et al. Progress in research on near-infrared second region activatable small molecule fluorescent probes[J]. Applied Chemistry, 2024, 41(1): 39-59. (in Chinese). [6] LAWSON J K, AUERBACH J M, ENGLISH JR R E, et al. NIF optical specifications: the importance of the rms gradient[J]. Proceedings of SPIE, 2010, 3492: 336-343. [7] 刘冬梅, 刘长亮. 食品检测系统中负滤光膜的研制[J]. 长春大学学报, 2014, 24(4): 439-441.LIU D M, LIU CH L. Research and development of minus filtering film in food detection system[J]. Journal of Changchun University, 2014, 24(4): 439-441. (in Chinese). [8] 李得天, 王多书, 王济州, 等. 拼接式集成滤光片的研制[J]. 真空与低温, 2018, 24(6): 374-379.LI D T, WANG D SH, WANG J ZH, et al. Research on long stripe assembled filters[J]. Vacuum and Cryogenics, 2018, 24(6): 374-379. (in Chinese). [9] 郝琦. 波分式3D眼镜多通道滤光膜的研制[D]. 长春: 长春理工大学, 2019.HAO Q. Multi-passband filters for the application of 3D glasses based on wavelength multiplexing approach[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese). [10] 付秀华, 郭宇怀, 李爽, 等. 3D显示系统的互补多频宽角度色谱滤光膜[J]. 光学学报, 2021, 41(5): 0531001. doi: 10.3788/AOS202141.0531001FU X H, GUO Y H, LI SH, et al. Complementary multi-band wide-angle chromatography filters in 3D display system[J]. Acta Optica Sinica, 2021, 41(5): 0531001. (in Chinese). doi: 10.3788/AOS202141.0531001 [11] 周晟, 王凯旋, 刘定权, 等. 3.2~3.8μm和4.9~5.4μm红外双色滤光片的研制[J]. 中国光学, 2021, 14(3): 536-543. doi: 10.37188/CO.2020-0206ZHOU SH, WANG K X, LIU D Q, et al. Research on infrared dual-color filters with 3.2~3.8 μm and 4.9~5.4 μm bands[J]. Chinese Optics, 2021, 14(3): 536-543. (in Chinese). doi: 10.37188/CO.2020-0206 [12] RUUD C J, CLERI A, MARIA J P, et al. Ultralow index SiO2 antireflection coatings produced via magnetron sputtering[J]. Nano Letters, 2022, 22(18): 7358-7362. doi: 10.1021/acs.nanolett.2c01945 [13] 王忠连, 任少鹏, 高鹏, 等. 用于荧光内窥镜的陷波滤光片的研制[J]. 光子学报, 2024, 53(1): 0131001. doi: 10.3788/gzxb20245301.0131001WANG ZH L, REN SH P, GAO P, et al. Investigation of notch filters for fluorescent endoscopes[J]. Acta Photonica Sinica, 2024, 53(1): 0131001. (in Chinese). doi: 10.3788/gzxb20245301.0131001 [14] LYNGNES O, KRAUS J. Design of optical Notch filters using apodized thickness modulation[J]. Applied Optics, 2014, 53(4): A21-A26. doi: 10.1364/AO.53.000A21 [15] AMOTCHKINA T V. Analytical estimations for the reference wavelength reflectance and width of high reflection zone of two-material periodic multilayers[J]. Applied Optics, 2013, 52(19): 4590-4595. doi: 10.1364/AO.52.004590 [16] 高晓丹, 刘岚, 姚敏, 等. 45°倾斜应用的多通道干涉截止滤光片研制[J]. 传感器与微系统, 2024, 43(2): 110-112. doi: 10.13873/J.1000-9787(2024)02-0110-03GAO X D, LIU L, YAO M, et al. Multi-channel interference cut-off filter for 45° tilt application[J]. Transducer and Microsystem Technologies, 2024, 43(2): 110-112. doi: 10.13873/J.1000-9787(2024)02-0110-03 [17] KAJIKAWA M, KATAOKA I. A design method of optical bandpass filters[J]. Journal of Lightwave Technology, 1997, 15(9): 1720-1727. doi: 10.1109/50.622900 [18] 王野, 付秀华, 张静, 等. 温度对电子束沉积Nb2O5薄膜性能的影响[J]. 长春理工大学学报(自然科学版), 2020, 43(3): 42-48.WANG Y, FU X H, ZHANG J, et al. Study on temperature influence of Nb2O5 thin films by electron beam evaporation[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2020, 43(3): 42-48. (in Chinese). [19] PETERMANN I, LINDBLOM M, STERNER C, GREGARD G, KARLSSON S. Optical fiber sensor solutions for in-situ transmittance control of electrochromic glazing, Advanced Sensor and Energy Materials, 2025, 100134, ISSN 2773-045X. [20] 王振宇, 付秀华, 林兆文, 等. 星间通信系统高精度分光镜的研制[J]. 中国光学(中英文), 2024, 17(2): 334-341. doi: 10.37188/CO.2023-0100WANG ZH Y, FU X H, LIN ZH W, et al. Development of high-precision beam splitter for inter-satellite communication system[J]. Chinese Optics, 2024, 17(2): 334-341. (in Chinese). doi: 10.37188/CO.2023-0100 -