-
摘要:
激光吸收光谱技术因其高灵敏、快速响应和实时在线检测等优势,在大气环境监测、工业生产、医疗诊断等领域得到广泛应用。然而,谱线混叠干扰是激光吸收光谱技术面临的主要问题之一。本文提出了一种基于腔衰荡光谱(CRDS)的多谱线光谱分析方法,搭建了基于自主设计笼式结构的Fabry-Pérot腔的CRDS气体检测系统,并选取乙炔(C2H2)在
6452 cm−1至6453 cm−1范围内的七条吸收谱线作为研究对象。实验结果表明,该系统能够精确测量并拟合C2H2的多谱线吸收光谱,最低检测极限为3.517×10−8 cm−1,对应C2H2气体的最小检测体积比为4.37×10−6。此外,通过定标过的高精度真空计测量腔内压强,结合气体吸收光谱的压力展宽效应,精确计算了三条谱线的压强展宽系数,相对偏差均低于0.04。本研究为激光吸收光谱技术中的多谱线分析提供了一种新的方法,提高了测量准确性和适用性。Abstract:Laser absorption spectroscopy (LAS) has been widely applied in atmospheric monitoring, industrial production, medical diagnostics, and other fields due to its high sensitivity, rapid response, and real-time online detection capabilities. However, spectral overlap interference remains a major challenge in LAS. In this study, a multispectral analysis approach based on cavity ring-down spectroscopy (CRDS) is proposed. A CRDS gas detection system was developed using a custom-designed cage-type Fabry-Pérot cavity, and seven acetylene (C2H2) absorption lines in the range of
6452 cm−1 to6453 cm−1 were selected for investigation. Experimental results demonstrate that the system can accurately measure and fit the C2H2 multispectral lines, achieving a minimum detectable limit of 3.517×10−8 cm−1, corresponding to a minimum detectable volume fraction of 4.37 ×10−6 for C2H2 gas. Additionally, the pressure in the cavity was precisely measured with a calibrated high-precision vacuum gauge, and the pressure-broadening effect in the absorption spectroscopy was used to calculate the pressure-broadening coefficients for three absorption lines, with relative deviation below 0.04. This study provides a novel method for multispectral analysis in LAS, improving measurement accuracy and broadening its applicability. -
-
[1] LI Q, TANG Q X, ZHANG Y J, et al. Research on rapid concentration field reconstruction method for two-dimensional geometric paths based on laser absorption spectroscopy[J]. Measurement, 2025, 241: 115764. doi: 10.1016/j.measurement.2024.115764 [2] 陈瀑, 杨健, 褚小立, 等. 近五年我国近红外光谱分析技术的研究与应用进展[J]. 分析化学, 2024, 52(9): 1213-1224.CHEN P, YANG J, CHU X L, et al. Research and application progress of near infrared spectroscopy analytical technology in China in the past five years[J]. Chinese Journal of Analytical Chemistry, 2024, 52(9): 1213-1224. (in Chinese). [3] 裴佳欢, 齐小花, 邹明强, 等. 表面增强拉曼光谱在动物源性食品兽药残留检测的研究进展[J]. 应用化学, 2024, 41(4): 459-471.PEI J H, QI X H, ZOU M Q, et al. Advances in surface-enhanced Raman spectroscopy for the detection of veterinary drug residues in foods of animal origin[J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 459-471. (in Chinese). [4] LIU CH, XU L J. Laser absorption spectroscopy for combustion diagnosis in reactive flows: a review[J]. Applied Spectroscopy Reviews, 2019, 54(1): 1-44. doi: 10.1080/05704928.2018.1448854 [5] 张馨予, 宋芳, 朱恒亮, 等. 红外光声光谱无创血糖检测技术[J]. 分析化学, 2023, 51(10): 1571-1583.ZHANG X Y, SONG F, ZHU H L, et al. Infrared photoacoustic spectroscopy for noninvasive blood glucose detection[J]. Chinese Journal of Analytical Chemistry, 2023, 51(10): 1571-1583. (in Chinese). [6] JEONG H J, PARK C J, KIM K, et al. Discrimination of explosive residues by standoff sensing using anodic aluminum oxide microcantilever laser absorption spectroscopy with kernel-based machine learning[J]. Sensors, 2024, 24(18): 5867. doi: 10.3390/s24185867 [7] ZHANG Y, LI Y, YAN J, et al. SO2 and SOF2 simultaneous detection by single mid-infrared laser based on tunable diode laser absorption spectroscopy[J]. High Voltage, 2024, 9(4): 786-793. doi: 10.1049/hve2.12451 [8] SUN J CH, WANG F P, CHANG J, et al. Inverse fitting direct absorption spectroscopy technology: simplified implementation and enhanced performance[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 320: 124660. doi: 10.1016/j.saa.2024.124660 [9] GONZALEZ Y, NELSON D D, SHORTER J H, et al. Precise measurements of 12CH2D2 by tunable infrared laser direct absorption spectroscopy[J]. Analytical Chemistry, 2019, 91(23): 14967-14974. doi: 10.1021/acs.analchem.9b03412 [10] REN Y B, DU J Y, ZHANG M H, et al. Laser absorption spectroscopy based on dual-convolutional neural network algorithms for multiple trace gases analysis[J]. Sensors and Actuators B: Chemical, 2024, 420: 136476. doi: 10.1016/j.snb.2024.136476 [11] 刘婧怡, 潘越, 姚路, 等. 小型化中红外直接吸收CO2光谱仪[J]. 光学 精密工程, 2024, 32(9): 1330-1337. doi: 10.37188/OPE.20243209.1330LIU J Y, PAN Y, YAO L, et al. Mid-infrared laser absorption spectroscopy CO2 spectrometer[J]. Optics and Precision Engineering, 2024, 32(9): 1330-1337. (in Chinese). doi: 10.37188/OPE.20243209.1330 [12] 杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文), 2023, 16(1): 151-157. doi: 10.37188/CO.2022-0029YANG SH H, QIAO SH D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi: 10.37188/CO.2022-0029 [13] MAO M X, GONG T, YUAN K J, et al. A coin-sized oxygen laser sensor based on tunable diode laser absorption spectroscopy combining a toroidal absorption cell[J]. Sensors, 2023, 23(19): 8249. doi: 10.3390/s23198249 [14] 任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 中国光学(中英文), 2023, 16(6): 1273-1292. doi: 10.37188/CO.2022-0246REN Y J, YAN CH X, XU J W. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 16(6): 1273-1292. (in Chinese). doi: 10.37188/CO.2022-0246 [15] 屈东胜, 洪延姬, 王广宇, 等. 利用波长调制光谱技术测量高温环境中的气体压强、温度和H2O组分浓度[J]. 光谱学与光谱分析, 2017, 37(5): 1339-1344.QU D SH, HONG Y J, WANG G Y, et al. Wavelength-modulation spectroscopy for measurements of gas pressure, temperature and H2O concentration in high-temperature environment[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1339-1344. (in Chinese). [16] LAN J Q, QIU H F, HU Q, et al. Suppression of interference fringes in laser absorption spectroscopy using signal feature improved Variational Mode Decomposition[J]. Sensors and Actuators B: Chemical, 2025, 422: 136576. doi: 10.1016/j.snb.2024.136576 [17] XIAFUKAITI A, LAGROSAS N, OGITA M, et al. Optimization for hydrogen gas quantitative measurement using tunable diode laser absorption spectroscopy[J]. Optics & Laser Technology, 2025, 180: 111587. [18] LI J Y, YANG H, GENG J Q, et al. Dual-species sensor using time-division multiplexed laser absorption spectroscopy for hydrogen sulfide and carbon monoxide measurement in SF6 insulated equipment fault detection[J]. Infrared Physics & Technology, 2024, 141: 105502. [19] 胡晓, 倪世传, 杨娜娜, 等. 用于氢过氧自由基光谱和动力学分析的腔衰荡光谱装置[J]. 分析化学, 2023, 51(6): 994-1002.HU X, NI SH CH, YANG N N, et al. A cavity ring-down spectrum instrument for analysis of HO2 radical spectroscopy and kinetics[J]. Chinese Journal of Analytical Chemistry, 2023, 51(6): 994-1002. (in Chinese). [20] 刘英, 胡迈, 王兴平, 等. Ppb级探测灵敏度的CO2腔衰荡光谱仪[J]. 光学 精密工程, 2023, 31(20): 2921-2929. doi: 10.37188/OPE.20233120.2921LIU Y, HU M, WANG X P, et al. Cavity ring-down spectrometer of CO2 with ppb detection sensitivity[J]. Optics and Precision Engineering, 2023, 31(20): 2921-2929. (in Chinese). doi: 10.37188/OPE.20233120.2921 [21] 李哲, 张志荣, 夏滑, 等. 连续波腔衰荡吸收光谱技术中的模式匹配研究[J]. 中国激光, 2022, 49(4): 0411001. doi: 10.3788/CJL202249.0411001LI ZH, ZHANG ZH R, XIA H, et al. Mode matching in continuous-wave cavity ring-down absorption spectroscopy[J]. Chinese Journal of Lasers, 2022, 49(4): 0411001. (in Chinese). doi: 10.3788/CJL202249.0411001 [22] WU Y X, MA T H, ZHOU Y T, et al. CRDS-based measurement of CO/CO2 concentration ratios for assessing transformer insulation aging[J]. Microwave and Optical Technology Letters, 2024, 66(10): e70011. doi: 10.1002/mop.70011 [23] JACQUEMART D, MANDIN J Y, DANA V, et al. The spectrum of acetylene in the 5-μm region from new line-parameter measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 76(3-4): 237-267. doi: 10.1016/S0022-4073(02)00055-9 [24] LEPÈRE M, BLANQUET G, WALRAND J, et al. Self-broadening coefficients and absolute line intensities in the ν4+ν5 band of acetylene[J]. Journal of Molecular Spectroscopy, 2007, 242(1): 25-30. doi: 10.1016/j.jms.2007.01.004 [25] 谈艳, 王进, 陶雷刚, 等. 光腔衰荡光谱方法测量分子的高精密谱线参数[J]. 中国激光, 2018, 45(9): 0911002. doi: 10.3788/CJL201845.0911002TAN Y, WANG J, TAO L G, et al. Precise parameters of molecular absorption lines from cavity ring-down spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911002. (in Chinese). doi: 10.3788/CJL201845.0911002 [26] GOTTI R, WÓJTEWICZ S, MARANGONI M, et al. High-precision HD spectroscopy near 1.53 μm[J]. Frontiers in Physics, 2024, 12: 1446803. doi: 10.3389/fphy.2024.1446803 [27] ROTHMAN L S, GORDON I E, BARBE A, et al. The HITRAN 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9-10): 533-572. doi: 10.1016/j.jqsrt.2009.02.013 [28] ROTHMAN L S, JACQUEMART D, BARBE A, et al. The HITRAN 2004 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96(2): 139-204. doi: 10.1016/j.jqsrt.2004.10.008 -