留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外与激光复合探测系统自身热辐射制冷抑制优化

段奋凯 江伦 宋延嵩 王武 丁小昆 董科研

段奋凯, 江伦, 宋延嵩, 王武, 丁小昆, 董科研. 红外与激光复合探测系统自身热辐射制冷抑制优化[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0029
引用本文: 段奋凯, 江伦, 宋延嵩, 王武, 丁小昆, 董科研. 红外与激光复合探测系统自身热辐射制冷抑制优化[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0029
DUAN Fen-kai, JIANG Lun, SONG Yan-song, WANG Wu, DING Xiao-kun, DONG Ke-yan. Thermal radiation suppression and cooling optimization in infrared and laser composite detection systems[J]. Chinese Optics. doi: 10.37188/CO.2025-0029
Citation: DUAN Fen-kai, JIANG Lun, SONG Yan-song, WANG Wu, DING Xiao-kun, DONG Ke-yan. Thermal radiation suppression and cooling optimization in infrared and laser composite detection systems[J]. Chinese Optics. doi: 10.37188/CO.2025-0029

红外与激光复合探测系统自身热辐射制冷抑制优化

cstr: 32171.14.CO.2025-0029
基金项目: 吉林省科技发展计划项目资助(No. 20230301001GX,No. 20230301002GX)
详细信息
    作者简介:

    段奋凯(2001—),男,内蒙古包头人,长春理工大学硕士研究生,主要从事红外光学系统设计与杂散光分析方面的研究。E-mail:360540462@qq.com

    宋延嵩(1983—),男,吉林长春人,博士,研究员,博士生导师,2006年、2009年、2014年于长春理工大学分别获得学士、硕士、及博士学位,主要研究方向为空间激光通信技术。E-mail:songyansong2006@126.com

  • 中图分类号: O439

Thermal radiation suppression and cooling optimization in infrared and laser composite detection systems

Funds: Supported by Science and Technology Development Plan Project of Jilin Province, China (No. 20230301001GX, No. 20230301002GX)
More Information
  • 摘要:

    针对远距离暗弱目标探测中红外系统热辐射噪声抑制的关键技术难题,本文设计了一种复合探测系统并提出热辐射制冷抑制优化方案。通过R-C光学结构与分色镜-次镜中空设计,实现长波红外与激光双波段共口径探测。为解决热辐射噪声问题,结合普朗克公式与非序列光线追迹,分析230 K~320 K温度区间的热辐射特性,并建立结合噪声项的改进式探测距离模型。通过动态规划算法优化制冷策略,确定主镜/折转镜遮光罩制冷至220 K的最优方案。结果表明300 K环境下的探测距离从300 km提升至430 km,230 K~320 K环境下探测距离始终大于400 km。本研究提出的双波段复合探测方案与分区制冷方法,为远距离暗弱目标探测及冷光学设计提供了参考。

     

  • 图 1  激光/长波复合探测系统结构图

    Figure 1.  Laser/Long-Wave infrared composite detection system structure diagram

    图 2  长波红外/激光光学模块像质评价(a)红外模块MTF(b)红外模块标准点列图(c)激光模块MTF(d)激光模块标准点列图

    Figure 2.  Image quality evaluation of long-wave infrared/laser optical modules: (a) MTF of the Infrared Module (b) Standard Spot Diagram of the Infrared Module (c) MTF of the Laser Module (d) Standard Spot Diagram of the Laser Module

    图 3  不同角度入射时光学元件散射情况

    Figure 3.  Light scattering characteristics of the optical element at different incident angles

    图 4  ABg散射模型

    Figure 4.  ABg scattering model

    图 5  红外系统光机结构模型

    Figure 5.  Infrared opto-mechanical system model

    图 6  光机系统的杂散辐射分析示意图(a)主镜杂散辐射分析(b)主镜遮光罩杂散辐射分析(c)折转镜遮光罩杂散辐射分析

    Figure 6.  Schematic diagram of stray radiation analysis for the optomechanical system: (a) Stray radiation analysis of the primary mirror, (b) Stray radiation analysis of the primary mirror baffle, (c) Stray radiation analysis of the folding mirror baffle.

    图 7  各辐射源在像面处产生的能量情况

    Figure 7.  Energy distribution at the image plane from different radiation sources

    图 8  动态规划求解过程

    Figure 8.  Dynamic programming solution process

    图 9  制冷前后工作温度与探测距离关系(a)未采取制冷(b)采取制冷

    Figure 9.  Relationship Between Operating Temperature and Detection Range Before and After Cooling (a) Without Cooling (b) With Cooling

    表  1  复合探测系统参数指标

    Table  1.   Composite Detection System Parameter Indicators

    Parameters LWIR Laser receiving
    Wavelength 8 µm−10 µm 1064 nm±10 nm
    Focal length 320 mm 900 mm
    Detector specification 640×512@25 μm 100 μm×100 μm,
    像元数:4×4
    Field of view 2.86°×2.29° >600 μrad
    F/# 2 5.6
    下载: 导出CSV

    表  2  长波红外材料的性能

    Table  2.   Properties of LWIR materials

    LWIR
    material
    Refractive index
    at 10 μm
    Transmission
    range (µm)
    Absorption coefficient at
    289 K and 10.6µm (cm−1)
    GE 4.0032 1.8−17 0.035
    Znse 2.4006 0.5−16 0.0005
    Zns 2.2002 1−12 0.08
    IRG206 2.777 1.0−17 0.03
    下载: 导出CSV

    表  3  常用的红外结构涂层的 ABg 参数

    Table  3.   ABg Parameters of Common Infrared Structural Coatings

    MaterialsTISABg
    High-Absorption Coating0.10.00636610
    Black Nickel0.140.0891210
    Z3060.0950.0604710
    下载: 导出CSV

    表  4  不同温度下红外系统各表面到达像面的自身杂散辐射分布

    Table  4.   Distribution of self-scattered radiation at the image plane for infrared system surfaces at different temperatures

    ComponenEmissivityRadiation Energy Received on the Image Plane from Each Surface at Different Temperatures (W)
    230 K250 K270 K290 K310 K320 K
    Primary mirror0.014.79E-087.64E-081.23E-071.85E-072.65E-073.11E-07
    Secondary mirror0.019.95E-091.59E-082.55E-083.84E-085.50E-086.47E-08
    Lens 1 (Ge)0.0122.27E-083.59E-085.76E-088.69E-081.24E-071.46E-07
    Lens 2 (ZnS)0.07283.41E-085.16E-088.29E-081.21E-071.79E-072.10E-07
    Lens 3 (ZnSe)0.00037.23E-111.82E-102.92E-104.40E-106.29E-107.41E-10
    Structure between Lens 1 and Lens 20.89.88E-102.37E-093.82E-095.86E-098.45E-089.98E-08
    Structure between Lens 2 and Lens30.89.79E-102.48E-093.98E-096.00E-098.58E-091.01E-08
    Structure between Lens 3 and
    collapsible lens baffle
    0.84.65E-077.41E-071.19E-061.79E-062.57E-063.02E-06
    Main baffle0.88.47E-061.12E-051.82E-052.74E-053.92E-054.62E-05
    Secondary support rings0.11.06E-061.69E-062.72E-064.10E-065.86E-066.90E-06
    field stop0.94.39E-086.92E-081.11E-071.68E-072.40E-072.82E-07
    collapsible lens 10.015.10E-088.35E-081.34E-072.02E-072.89E-073.41E-07
    Lens 4 (irg206)0.0233.04E-075.63E-079.04E-071.36E-061.95E-062.23E-06
    Lens 5 (ZnSe)0.000355.72E-098.27E-091.33E-082.00E-082.86E-083.37E-08
    Lens 6 (irg206)0.0223.60E-075.87E-079.44E-071.42E-062.04E-062.40E-06
    Lens 7 (Zns)0.07684.67E-076.73E-071.081E-061.63E-062.33E-062.74E-06
    collapsible lens 20.017.65E-091.88E-083.02E-083.73E-086.51E-087.66E-08
    collapsible lens baffle0.85.54E-069.64E-061.55E-052.33E-053.34E-053.94E-05
    collapsible lens mount0.82.92E-071.84E-062.96E-064.46E-066.38E-067.51E-06
    Structure between Lens 4 and Lens 50.83.34E-076.25E-071.00E-061.51E-062.07E-062.36E-06
    Structure between Lens 5 and Lens 60.81.58E-073.69E-075.43E-078.15E-071.17E-061.38E-06
    Structure between Lens 6 and Lens 70.83.47E-075.53E-078.88E-071.34E-061.91E-062.25E-06
    Structure between Lens 7 and dewar0.13.96E-076.30E-071.01E-061.53E-062.19E-062.57E-06
    Total-1.84E-052.95E-054.75E-057.16E-051.02E-041.21E-04
    下载: 导出CSV

    表  5  系统参数对比

    Table  5.   Comparison of system parameters

    Parameters This Study System Other Study System
    Aperture 160 mm 300 mm
    Focal 320 mm 600 mm
    Wavelength 8µm—10 μm 3µm—5µm
    Detection Range(work
    temperature:20 °C)
    Without Cooling:300 km
    With Cooling:430 km
    400 km
    下载: 导出CSV
  • [1] ZHANG CH R, PIAO M X, XIE Y F, et al. Optical design of a monolithic compressed folding imaging lens for infrared/laser dual-band[J]. Optics Express, 2023, 31(16): 25691-25706. doi: 10.1364/OE.496908
    [2] 陈洁, 夏团结, 杨童, 等. 长波红外与激光共孔径双模导引光学系统研究[J]. 光学学报, 2023, 43(12): 1222001. doi: 10.3788/AOS221609

    CHEN J, XIA T J, YANG T, et al. Research on long-wave infrared and laser common-aperture dual-mode guided optical system[J]. Acta Optica Sinica, 2023, 43(12): 1222001. (in Chinese). doi: 10.3788/AOS221609
    [3] 颜洪雷. 红外与激光复合探测关键技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    YAN H L. Research on key technologies of infrared and laser composite detection[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics), 2014. (in Chinese).
    [4] 吴洪波, 张新, 王灵杰, 等. 单光子激光与中波红外共口径探测光学系统[J]. 光学 精密工程, 2021, 29(6): 1260-1269. doi: 10.37188/OPE.20212906.1260

    WU H B, ZHANG X, WANG L J, et al. Common aperture optical system of single photon laser and medium wave infrared[J]. Optics and Precision Engineering, 2021, 29(6): 1260-1269. (in Chinese). doi: 10.37188/OPE.20212906.1260
    [5] ZHU Y, ZHANG X, LIU T, et al. Internal and external stray radiation suppression for LWIR catadioptric telescope using non-sequential ray tracing[J]. Infrared Physics & Technology, 2015, 71: 163-170.
    [6] 牛金星, 周仁魁, 刘朝晖, 等. 红外探测系统自身热辐射杂散光的分析[J]. 光学学报, 2010, 30(8): 2267-2271. doi: 10.3788/AOS20103008.2267

    NIU J X, ZHOU R K, LIU ZH H, et al. Analysis of stray light caused by thermal radiation of infrared detection system[J]. Acta Optica Sinica, 2010, 30(8): 2267-2271. (in Chinese). doi: 10.3788/AOS20103008.2267
    [7] 朱海勇, 陈俊林, 曾智江, 等. 用于冷光学长波红外杜瓦组件杂散光分析与抑制[J]. 红外与激光工程, 2023, 52(7): 20220823. doi: 10.3788/IRLA20220823

    ZHU H Y, CHEN J L, ZENG ZH J, et al. Stray light analysis and suppression of long-wave infrared Dewar component for cold optics[J]. Infrared and Laser Engineering, 2023, 52(7): 20220823. (in Chinese). doi: 10.3788/IRLA20220823
    [8] SUN CH M, ZHAO F, ZHANG Z. Stray light analysis of large aperture optical telescope using TracePro[J]. Proceedings of SPIE, 2014, 9298: 92981F.
    [9] SHEN L M, LI ZH G, LIU K. Analysis of the internal stray radiation in infrared imaging system based on ambient temperature[J]. Proceedings of SPIE, 2021, 12061: 120611D.
    [10] 余菲, 任栖锋, 李华, 等. 同轴全反红外光学系统自身热辐射测量方法[J]. 红外与激光工程, 2018, 47(1): 0104003. doi: 10.3788/IRLA201847.0104003

    YU F, REN Q F, LI H, et al. Measurement method of self-thermal radiation for coaxial total reflection infrared optical system[J]. Infrared and Laser Engineering, 2018, 47(1): 0104003. (in Chinese). doi: 10.3788/IRLA201847.0104003
    [11] 李宝库, 柳乐, 徐伟, 等. 红外系统自身热辐射导致的分布式探测距离变化分析[J]. 红外与激光工程, 2023, 52(3): 20220417. doi: 10.3788/IRLA20220417

    LI B K, LIU L, XU W, et al. Analysis of distributed detection range changes caused by infrared system self-thermal radiation[J]. Infrared and Laser Engineering, 2023, 52(3): 20220417. (in Chinese). doi: 10.3788/IRLA20220417
    [12] 牟达, 韩红霞. 红外系统作用距离方程的比较与分析[J]. 长春理工大学学报(自然科学版), 2012, 35(4): 5-9.

    MU D, HAN H X. Comparison and analysis for operating range equations of infrared system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2012, 35(4): 5-9. (in Chinese).
    [13] 陈闽, 吴学铭, 王海晏, 等. 飞行目标红外辐射特性研究及仿真实现[J]. 电光与控制, 2017, 24(6): 57-60.

    CHEN M, WU X M, WANG H Y, et al. Research and simulation of aircraft infrared radiation characteristics[J]. Electronics Optics & Control, 2017, 24(6): 57-60. (in Chinese).
    [14] 黄强, 钮新华, 沈学民. 红外光学系统内部热辐射引起的杂散辐射分析[J]. 红外技术, 2006, 28(6): 348-352.

    HUANG Q, NIU X H, SHEN X M. Stray radiation analysis caused by interior heat radiation in infrared optical systems[J]. Infrared Technology, 2006, 28(6): 348-352. (in Chinese).
    [15] 曲锐. 机载多波段共孔径动态成像光学系统研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2023.

    QU R. Research on airborne multi-band common aperture dynamic imaging optical system[D]. Xi'an: University of Chinese Academy of Sciences (Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2023. (in Chinese).
    [16] 张发强, 张维光, 万文博. 基于光线追迹的红外探测光学系统杂散辐射研究[J]. 红外与激光工程, 2019, 48(9): 0904006. doi: 10.3788/IRLA201948.0904006

    ZHANG F Q, ZHANG W G, WAN W B. Research on stray radiation of infrared detection optical system based on ray-tracing[J]. Infrared and Laser Engineering, 2019, 48(9): 0904006. (in Chinese). doi: 10.3788/IRLA201948.0904006
    [17] TIAN J G, LI X L, HOU L B, et al. Analysis and suppression of stray radiation in an infrared telescope system in geosynchronous orbit[J]. Proceedings of SPIE, 2020, 11548: 115480I.
    [18] 谢鑫龙, 朱晓晓, 朱嘉诚, 等. 非制冷热红外成像光谱仪内部杂散辐射的分析与抑制[J]. 光学学报, 2022, 42(15): 1512006. doi: 10.3788/AOS202242.1512006

    XIE X L, ZHU X X, ZHU J CH, et al. Analysis and suppression of stray radiation in uncooled thermal infrared imaging spectrometer[J]. Acta Optica Sinica, 2022, 42(15): 1512006. (in Chinese). doi: 10.3788/AOS202242.1512006
    [19] LACROIX L, KURZIUS S. Peeling the onion: an heuristic overview of hit-to-kill missile defense in the 21st century[J]. Proceedings of SPIE, 2005, 5732: 225-249. doi: 10.1117/12.583369
    [20] 崇元, 艾葳, 王玉坤. 红外点目标探测距离估算模型[J]. 指挥控制与仿真, 2020, 42(6): 59-62.

    CHONG Y, AI W, WANG Y K. Operating distance estimation model of infrared point target[J]. Command Control & Simulation, 2020, 42(6): 59-62. (in Chinese).
    [21] ZOU Y G, YANG Y L, ZHANG Y X, et al. Computationally efficient assessment of fuel economy of multi-modes and multi-gears hybrid electric vehicles: a hyper rapid dynamic programming approach[J]. Energy, 2024, 313: 133811. doi: 10.1016/j.energy.2024.133811
    [22] 曾妮, 陈俊豪, 傅清爽. 基于贪心算法的动态规划策略[J]. 电脑知识与技术, 2021, 17(20): 141-143,152.

    ZENG N, CHEN J H, FU Q SH. Dynamic programming strategy based on greedy algorithm[J]. Computer Knowledge and Technology, 2021, 17(20): 141-143,152. (in Chinese).
    [23] 吴洪波. 远距离暗弱目标探测光学系统关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    WU H B. Research on key technologies of optical systems for remote weak target detection[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022. (in Chinese).
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-10-11

目录

    /

    返回文章
    返回