留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意曲线成像及其在偏振检测中的应用

王玉荣 万成龙 李国剑 马阿宁

王玉荣, 万成龙, 李国剑, 马阿宁. 任意曲线成像及其在偏振检测中的应用[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0052
引用本文: 王玉荣, 万成龙, 李国剑, 马阿宁. 任意曲线成像及其在偏振检测中的应用[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0052
WANG Yurong, WAN Chenglong, LI Guojian, MA Aning. Arbitrary curve imaging and its application in polarization detection[J]. Chinese Optics. doi: 10.37188/CO.2025-0052
Citation: WANG Yurong, WAN Chenglong, LI Guojian, MA Aning. Arbitrary curve imaging and its application in polarization detection[J]. Chinese Optics. doi: 10.37188/CO.2025-0052

任意曲线成像及其在偏振检测中的应用

cstr: 32171.14.CO.2025-0052
基金项目: 甘肃省自然科学基金重点项目(No. 23JRRA1021),国家自然科学基金(No. 61905100)
详细信息
    作者简介:

    李国剑(1978—),男(汉族),甘肃白银人,博士,教授,硕士生导师,主要研究方向为基于超表面的电磁波调控,涡旋光通信。E-mail:ligj2009@163.com

    马阿宁(1980—),女(汉族),陕西咸阳人,博士,副教授,硕士生导师,主要研究方向为超表面光学器件的设计及应用,涡旋光传输和通信。E-mail:maan@lzu.edu.cn

  • 中图分类号: O436

Arbitrary curve imaging and its application in polarization detection

Funds: Supported by
More Information
  • 摘要:

    为深入研究在几何相位原理作用下的超构表面成像功能,本文利用超透镜的几何相位成像原理推导出任意曲线的成像公式,并利用标量衍射理论验证其可行性与正确性,同时将此理论应用于入射光偏振状态的检测中。结果表明,基于几何相位原理的超构表面相位调控能实现任意曲线的成像以及对入射光偏振状态检测的功能,这对于全息成像、光通信、量子科学等领域的研究都有一定的启发意义。

     

  • 图 1  不同几何相位设计实现不同成像功能的示意图。(a)在焦平面实现任意曲线成像;(b) 定性检测入射光偏振类型;(c) 定量检测线偏振光偏振方向,A为圆上的第j个点,AP为入射线偏振光的方向,AQ为点A处线偏振光的方向,AQ经过圆心

    Figure 1.  Schematic of different fuctions by phase design. (a) arbitrary curve imaging on focal plane; (b) detecting the polarization state of incident light qualitatively; (c) detecting the polarization direction of linearly polarized light quantitavely, A is the jth point on the circle, AP is the direction of incident linearly polarized light, AQ is the exact direction of linearly polarized light on point A, and AQ passes through the center of the circle

    图 2  超构表面单元结构及其透射率。(a) 超构表面单元结构;(b) 同极化圆偏振光(虚线)和交叉极化圆偏振光(实线)的透射率

    Figure 2.  The unit cell of the metasurface and its transmittance. (a) The unit cell of the metasurface; (b) the transmittance of circularly co-polarized light (dashed line) and circularly cross-polarized light (solid line)

    图 3  不同超构表面单元数下单个焦点的归一化强度图。(a) N =100; (b) N=250; (c) N=500; (d) N=1000

    Figure 3.  Normalized intensity of single point under different numbers of meta-atoms. (a) N =100; (b) N=250; (c) N=500; (d) N=1000

    图 4  焦平面处的光强分布。(a) 椭圆;(b) 圆;(c) 抛物线;(d) 三角形;(e) 正方形;(f) 字母“LZU”

    Figure 4.  The intensity distribution on focal plane. (a) an ellipse; (b) a circle; (c) a parabola; (d) a triangle; (e) a square; (f) the letters “LZU”

    图 5  不同偏振的入射光及其对应的图像。(a)左旋圆偏振光入射;(b) 左旋椭圆偏振光入射;(c) 线偏振光入射;(d) 右旋椭圆偏振光入射;(b) 右旋圆偏振光入射。左侧表示入射的偏振状态,右侧表示相应偏振态入射时焦平面处的图像

    Figure 5.  Different polarization states of incident beam and their corresponding result figures. (a) incident with LCP light; (b) incident with left-handed elliptically polarized light; (c) incident with linear polarized light; (d) incident with right-handed elliptically polarized light; (e) incident with RCP light. The left denotes the incident polarized state and the right denotes corresponding result figures on focal plane

    图 6  光强随极角变化的图像及其归一化强度分布曲线。入射偏振光的旋转角度分别是(a) $ 0 $,(b) $ \dfrac{\mathrm{{\text{π}} }}{4} $,(c) $ \dfrac{\mathrm{{\text{π}} }}{2} $,(d) $ \dfrac{3\mathrm{{\text{π}} }}{4} $。图中第一行左侧箭头表示入射线偏振光的方向,右侧箭头表示焦平面前偏振片传输轴的方向

    Figure 6.  Different figures of which the intensity varies with the polar angle and their normalized intensity distribution curves. The rotation angles of incident polarized light are (a)$ 0 $, (b)$ \dfrac{\mathrm{{\text{π}} }}{4} $, (c)$ \dfrac{\mathrm{{\text{π}} }}{2} $, (d)$ \dfrac{3\mathrm{{\text{π}} }}{4} $,respectively. The left arrow in the first row shows the direction of incident polarized light, while the right arrow shows the transmission axis of the analyzer before the focal plane

  • [1] 吴太夏, 张立福, 岑奕, 等. 偏振遥感的中性点大气纠正方法研究[J]. 遥感学报, 2013, 17(2): 241-247,235.

    WU T X, ZHANG L F, CEN Y, et al. Neutral point consideration for atmospheric correction in polarization remote sensing[J]. Journal of Remote Sensing, 2013, 17(2): 241-247,235. (in Chinese).
    [2] DUBEY K, SRIVASTAVA V, DALAL K. In vivo automated quantification of thermally damaged human tissue using polarization sensitive optical coherence tomography[J]. Computerized Medical Imaging and Graphics, 2018, 64: 22-28. doi: 10.1016/j.compmedimag.2018.01.002
    [3] SHIN A, PARK J, DEMER J L. Opto-mechanical characterization of sclera by polarization sensitive optical coherence tomography[J]. Journal of Biomechanics, 2018, 72: 173-179. doi: 10.1016/j.jbiomech.2018.03.017
    [4] UGRYUMOVA N, JACOBS J, BONESI M, et al. Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical coherence tomography[J]. Osteoarthritis and Cartilage, 2009, 17(1): 33-42. doi: 10.1016/j.joca.2008.05.005
    [5] WANG R X, HAN J, LIU J L, et al. Multi-foci metalens for terahertz polarization detection[J]. Optics Letters, 2020, 45(13): 3506-3509. doi: 10.1364/OL.395580
    [6] YUE ZH, LI J T, ZHENG C L, et al. Manipulation of polarization conversion and multiplexing via all-silicon phase-modulated metasurfaces[J]. Chinese Optics Letters, 2022, 20(4): 043601. doi: 10.3788/COL202220.043601
    [7] HE G L, ZHENG Y Q, ZHOU CH D, et al. Multiplexed manipulation of orbital angular momentum and wavelength in metasurfaces based on arbitrary complex-amplitude control[J]. Light: Science & Applications, 2024, 13(1): 98.
    [8] WAHEED M, MAHMOOD N, SHAFQAT M D, et al. Advancing broadband light structuring through single-size nanostructured all-dielectric meta-devices[J]. Materials Today Communications, 2023, 36: 106584. doi: 10.1016/j.mtcomm.2023.106584
    [9] XIONG B, LIU Y, XU Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629): 294-299. doi: 10.1126/science.ade5140
    [10] RIND Y M, MAHMOOD N, MEHMOOD M Q, et al. Multidimensional and multifunctional metasurface design using hybrid spin decoupling[J]. Optical Materials Express, 2023, 13(4): 1150-1162. doi: 10.1364/OME.481912
    [11] MA ZH Y, TIAN T T, LIAO Y X, et al. Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces[J]. Nature Communications, 2024, 15(1): 8370. doi: 10.1038/s41467-024-52676-w
    [12] JI J T, LI J, WANG ZH ZH, et al. On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix[J]. Nature Communications, 2024, 15(1): 8271. doi: 10.1038/s41467-024-52476-2
    [13] YUE Z Q, SIPAHI T, AHMED H, et al. Multispectral polarization states generation with a single metasurface[J]. Laser & Photonics Reviews, 2024, 18(10): 2400176.
    [14] CHEN M J, WEN L, PAN D H, et al. Full-color nanorouter for high-resolution imaging[J]. Nanoscale, 2021, 13(30): 13024-13029. doi: 10.1039/D1NR02166D
    [15] 陈沁, 文龙, 杨先光, 等. 面向高像素密度图像传感器的结构色技术[J]. 光学学报, 2021, 41(8): 0823010. doi: 10.3788/AOS202141.0823010

    CHEN Q, WEN L, YANG X G, et al. Structural color technology for high pixel density image sensors[J]. Acta Optica Sinica, 2021, 41(8): 0823010. (in Chinese). doi: 10.3788/AOS202141.0823010
    [16] ASAD A, KIM J, KHALIQ H S, et al. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators[J]. Nanoscale Horizons, 2023, 8(6): 759-766. doi: 10.1039/D2NH00555G
    [17] 陈磊, 严金华, 郭焕祥, 等. 基于硅基超表面的高效率大角度光束偏转[J]. 光学学报, 2021, 41(3): 0305001. doi: 10.3788/AOS202141.0305001

    CHEN L, YAN J H, GUO H X, et al. Highly efficient large-angle beam deflection based on silicon-based metasurface[J]. Acta Optica Sinica, 2021, 41(3): 0305001. (in Chinese). doi: 10.3788/AOS202141.0305001
    [18] HU J, BANDYOPADHYAY S, LIU Y H, et al. A review on metasurface: from principle to smart metadevices[J]. Frontiers in Physics, 2021, 8: 586087. doi: 10.3389/fphy.2020.586087
    [19] LI J X, YU P, ZHANG SH, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3
    [20] BAO L, WU B, WU R Y, et al. On‐chip multidimensional manipulations of spatial laser fields by jointly controlling amplitude and phase of metasurface[J]. Advanced Functional Materials, 2025, 35(9): 2415983. doi: 10.1002/adfm.202415983
    [21] LI S Q, CHEN CH, WANG G X, et al. Metasurface polarization optics: phase manipulation for arbitrary polarization conversion condition[J]. Physical Review Letters, 2025, 134(2): 023803. doi: 10.1103/PhysRevLett.134.023803
    [22] XU M ZH, CAO Y, SUN X J, et al. Circular polarization detection metasurface inspired by the polarized vision of mantis shrimp[J]. Optics Communications, 2022, 507: 127599. doi: 10.1016/j.optcom.2021.127599
    [23] ZANG H P, YANG Z Y, ZHOU X Y, et al. Full-stokes polarization detection enabled by a terahertz all-dielectric metasurface[J]. Journal of Applied Physics, 2024, 135(18): 183103. doi: 10.1063/5.0208045
    [24] ZENG J W, LI L, YANG X D, et al. Generating and separating twisted light by gradient–rotation split-ring antenna metasurfaces[J]. Nano Letters, 2016, 16(5): 3101-3108. doi: 10.1021/acs.nanolett.6b00360
    [25] 刘梦蛟, 李添悦, 戈钦, 等. 多功能超构表面的相位调控机制及研究进展[J]. 光学学报, 2022, 42(21): 2126004. doi: 10.3788/AOS202242.2126004

    LIU M J, LI T Y, GE Q, et al. Phase modulation mechanism and research progress of multifunctional metasurfaces[J]. Acta Optica Sinica, 2022, 42(21): 2126004. (in Chinese). doi: 10.3788/AOS202242.2126004
    [26] KAMALI S M, ARBABI A, ARBABI E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7(1): 11618. doi: 10.1038/ncomms11618
    [27] JI J T, LI J, WANG ZH ZH, et al. On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix[J]. Nature Communications, 2024, 15(1): 8271. (查阅网上资料, 本条文献与第12条文献重复, 请确认).
    [28] LIU X, CAO Q, ZHANG N J, et al. Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers[J]. Nature Communications, 2024, 15(1): 5435. doi: 10.1038/s41467-024-49819-4
    [29] DENG Z L, HU M X, QIU SH F, et al. Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law[J]. Nature Communications, 2024, 15(1): 2380. doi: 10.1038/s41467-024-46758-y
  • 加载中
图(6)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-26
  • 录用日期:  2025-09-09
  • 网络出版日期:  2025-09-27

目录

    /

    返回文章
    返回