留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字微镜区域翻转的强光干扰抑制技术

汤佐 王晓恒 毛叶飞 赵若晨 赵宝珍 常慧聪 杨昌 肖林

汤佐, 王晓恒, 毛叶飞, 赵若晨, 赵宝珍, 常慧聪, 杨昌, 肖林. 基于数字微镜区域翻转的强光干扰抑制技术[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0095
引用本文: 汤佐, 王晓恒, 毛叶飞, 赵若晨, 赵宝珍, 常慧聪, 杨昌, 肖林. 基于数字微镜区域翻转的强光干扰抑制技术[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0095
TANG Zuo, WANG Xiao-heng, MAO Ye-fei, ZHAO Ruo-chen, ZHAO Bao-zhen, CHANG Hui-cong, YANG Chang, XIAO Lin. Intense light interference suppression technique based on regional flipping of digital micromirror device[J]. Chinese Optics. doi: 10.37188/CO.2025-0095
Citation: TANG Zuo, WANG Xiao-heng, MAO Ye-fei, ZHAO Ruo-chen, ZHAO Bao-zhen, CHANG Hui-cong, YANG Chang, XIAO Lin. Intense light interference suppression technique based on regional flipping of digital micromirror device[J]. Chinese Optics. doi: 10.37188/CO.2025-0095

基于数字微镜区域翻转的强光干扰抑制技术

cstr: 32171.14.CO.2025-0095
基金项目: 国家自然科学基金企业创新发展联合基金(No. U24B2009)
详细信息
    作者简介:

    汤 佐(1997—),男,贵州毕节人,博士研究生,主要从事光学探测系统设计方面的研究。E-mail:tangzuo2024@163.com

    肖 林(1982—),男,福建将乐人,博士毕业于清华大学,研究员,从事航天先进探测技术研究。E-mail:xiaolin_82@163.com

  • 中图分类号: O439;TN977

Intense light interference suppression technique based on regional flipping of digital micromirror device

Funds: Supported by Enterprise Innovation and Development Joint Fund of the National Natural Science Foundation (No. U24B2009)
More Information
  • 摘要:

    为应对强激光对光电探测器成像的干扰与致眩威胁,本文提出并验证了一种基于数字微镜器件(DMD)区域翻转的动态激光干扰抑制方法。该方法通过一个二次成像光路,将DMD置于一次像面,通过实时识别并翻转对应于激光干扰区域的微镜,将高功率干扰能量偏转出主光路,从而在保护探测器的同时保留大部分视场的有效图像信息。我们首先通过光学仿真验证了该方案的可行性,随后搭建实验平台进行了系统性测试。此外,本研究还量化控制DMD翻转的掩膜半径对抑制效果的影响,验证了当翻转区域大于干扰光斑时能达到最优抑制效果。实验结果表明,DMD区域翻转对不同功率和不同入射角的激光干扰均能实现有效抑制。与无抑制时相比,探测器接收的干扰功率显著降低:在激光离轴入射时实现超过28.5 dB的抗激光干扰阈值提升,当激光干扰平行于光轴入射时可实现超过30 dB的抗激光干扰阈值提升。与传统图像处理方法相比,该方法在强光干扰场景下能尽可能保留图像信息量。该技术为光电系统在强光干扰环境下保持稳定成像提供了高效、简洁的解决方案。

     

  • 图 1  激光干扰抑制原理图

    Figure 1.  Block diagram of laser interference suppression principle

    图 2  仿真模型示意图

    Figure 2.  Schematic diagram of the simulation model

    图 3  仿真模型点列图

    Figure 3.  Spot diagram of the simulation model

    图 4  仿真模型MTF

    Figure 4.  MTF of the simulation model

    图 5  实验装置

    Figure 5.  Experimental Device

    图 6  成像效果

    Figure 6.  Imaging performance

    图 7  激光干扰及抑制效果示意图

    Figure 7.  Schematic diagram of laser interference and suppression performance

    图 8  不同功率密度激光干扰下成像效果图

    Figure 8.  Imaging performance under laser interference with different power density

    图 9  不同入射角光线示意图

    Figure 9.  Schematic diagram of light rays with different incident angles

    图 10  不同入射角探测器成像效果

    Figure 10.  Imaging performance of detectors at different incident angles

    图 11  不同入射角下受激光干扰图像

    Figure 11.  Images under the interference laser with different incident angles

    图 12  不同翻转半径下激光干扰抑制效果示意图(入射角0°)

    Figure 12.  Schematic diagram of laser interference suppression performance under different flip radii (incidence angle 0°)

    图 13  不同翻转半径下激光干扰抑制效果示意图(入射角18°)

    Figure 13.  Schematic diagram of laser interference suppression performance under different flip radii (incidence angle 18°)

    图 14  不同功率激光干扰抑制效果图(入射角0°)

    Figure 14.  Diagrams of laser interference suppression under different powers (incidence angle 0°)

    图 15  不同方法对激光干扰抑制效果对比

    Figure 15.  Comparison of laser interference suppression effects among different methods

    图 16  不同入射角激光干扰抑制效果对比

    Figure 16.  Comparison of laser interference suppression effects with different incident angles

    表  1  不同入射角下激光干扰在焦平面处功率Interference laser power with different incident angles at the focal plane

    入射角(°)061218
    功率(μW)80.991.766.857.0
    下载: 导出CSV

    表  2  不同翻转半径激光干扰抑制后探测器接收功率密度

    Table  2.   Detector received power density laser interference suppression with different flip radii

    掩膜半径(pixel)抑制后功率(μW)
    (入射角0)
    抑制后功率(μW)
    (入射角18°)
    102.493.37
    200.620.72
    300.430.46
    400.390.40
    500.350.36
    下载: 导出CSV

    表  3  干扰抑制前后探测器接收功率对比 (入射角0°)

    Table  3.   Comparison of detector received power density before and after interference suppression (incidence angle 0°)

    入瞳处激光干扰功率
    密度(W/cm2
    焦平面抑制前
    功率(μW)
    焦平面抑制后
    功率(μW)
    抑制能力
    (dB)
    2.32×10−2431.00.4330.01
    1.56×10−2273.00.2730.05
    8.31×10−3150.20.1530.01
    2.83×10−352.00.0530.17
    1.73×10−332.10.0330.29
    1.33×10−324.60.0230.90
    8.99×10−416.670.0132.22
    下载: 导出CSV

    表  4  干扰抑制前后探测器接收功率对比 (入射角6°)

    Table  4.   Comparison of detector received power density before and after interference suppression (incidence angle 6°)

    入瞳处激光干扰功率
    密度(W/cm2
    焦平面抑制前
    功率(μW)
    焦平面抑制后
    功率(μW)
    抑制能力
    (dB)
    2.32×10−2794.00.5331.76
    1.56×10−2462.00.3131.73
    8.31×10−3294.00.2031.67
    2.83×10−391.70.0631.84
    1.73×10−359.380.0431.72
    1.33×10−342.280.0331.49
    8.99×10−430.710.0231.86
    下载: 导出CSV

    表  5  干扰抑制前后探测器接收功率对比 (入射角12°)

    Table  5.   Comparison of detector received power density before and after interference suppression (incidence angle 12°)

    入瞳处激光干扰功率
    密度(W/cm2
    焦平面抑制前
    功率(μW)
    焦平面抑制后
    功率(μW)
    抑制能力
    (dB)
    2.32×10−2542.00.7628.53
    1.56×10−2308.00.4028.86
    8.31×10−3201.00.2628.88
    2.83×10−366.80.0829.22
    1.73×10−342.40.0529.28
    1.33×10−330.80.0428.86
    8.99×10−421.910.0328.63
    下载: 导出CSV

    表  6  干扰抑制前后探测器接收功率对比(入射角18°)

    Table  6.   Comparison of detector received power density before and after interference suppression (incidence angle 18°)

    入瞳处激光干扰功率
    密度(W/cm2
    焦平面抑制前
    功率(μW)
    焦平面抑制后
    功率(μW)
    抑制能力
    (dB)
    2.32×10−2422.00.4030.23
    1.56×10−2232.00.2330.04
    8.31×10−3154.00.1330.74
    2.83×10−357.00.0530.57
    1.73×10−337.80.0331.00
    1.33×10−328.70.0231.56
    8.99×10−421.20.0230.25
    下载: 导出CSV
  • [1] 曹生珠, 何延春, 王健, 等. 卫星用高能激光防护技术发展现状[J]. 真空与低温, 2024, 30(1): 1-9.

    CAO SH ZH, HE Y CH, WANG J, et al. Development status of high energy laser protection technology for satellites[J]. Vacuum and Cryogenics, 2024, 30(1): 1-9. (in Chinese).
    [2] 陈健, 高慧斌. 高重频CO2激光干扰技术研究[J]. 中国光学, 2018, 11(6): 983-990. doi: 10.3788/co.20181106.0983

    CHEN J, GAO H B. Research on the interference technology of high repetition frequency CO2 laser[J]. Chinese Optics, 2018, 11(6): 983-990. (in Chinese). doi: 10.3788/co.20181106.0983
    [3] 李仰亮, 叶庆, 吴云龙, 等. 光电成像系统激光防护技术研究进展(特邀)[J]. 红外与激光工程, 2023, 52(6): 20230192. doi: 10.3788/IRLA20230192

    LI Y L, YE Q, WU Y L, et al. Research progress of laser protection technology for optoelectronic imaging system (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230192. (in Chinese). doi: 10.3788/IRLA20230192
    [4] 陈京生, 李清, 吴红, 等. 国外激光武器及其标准化的研究进展[J]. 兵器装备工程学报, 2023, 44(10): 165-172.

    CHEN J SH, LI Q, WU H, et al. Research progress of laser weapons and its standardization abroad[J]. Journal of Ordnance Equipment Engineering, 2023, 44(10): 165-172. (in Chinese).
    [5] HONG L H, HU CH Y, LIU Y Y, et al. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation[J]. PhotoniX, 2023, 4(1): 11. doi: 10.1186/s43074-023-00088-2
    [6] 姜玉刚, 刘华松, 王利栓, 等. 卫星激光防护薄膜窗口的设计与制备技术研究[J]. 中国光学, 2019, 12(4): 804-809. doi: 10.3788/co.20191204.0804

    JIANG Y G, LIU H S, WANG L SH, et al. Design and preparation technology of laser protective film window of satellite[J]. Chinese Optics, 2019, 12(4): 804-809. (in Chinese). doi: 10.3788/co.20191204.0804
    [7] ZHENG J Y, LI Z J, ZHANG M Q, et al. New type of coatings combining invisibility and high power laser protection function[J]. Ceramics International, 2024, 50(7): 11442-11450. doi: 10.1016/j.ceramint.2024.01.044
    [8] 朱锦鹏, 马壮, 高丽红, 等. 基于等离子喷涂的反射型激光防护涂层研究[J]. 中国光学, 2017, 10(5): 578-587. doi: 10.3788/co.20171005.0578

    ZHU J P, MA ZH, GAO L H, et al. Reflective laser protective coating based on plasma spraying[J]. Chinese Optics, 2017, 10(5): 578-587. (in Chinese). doi: 10.3788/co.20171005.0578
    [9] 李荣斌, 邢悦, 张志玺, 等. 等离子喷涂YSZ热障涂层的工艺研究[J]. 表面技术, 2024, 53(7): 217-229.

    LI R B, XING Y, ZHANG ZH X, et al. Plasma spraying process of YSZ thermal barrier coatings[J]. Surface Technology, 2024, 53(7): 217-229.
    [10] ZHU J P, MA ZH, GAO L H, et al. Influence of microstructure on the optical property of plasma-sprayed Al, Cu, and Ag coatings[J]. Materials & Design, 2016, 111: 192-197.
    [11] WANG Z X, JI X W, DONG N N, et al. Femtosecond laser-induced phase transition in VO2 films[J]. Optics Express, 2022, 30(26): 47421-47429. doi: 10.1364/OE.477910
    [12] TOGNAZZI A, GANDOLFI M, LI B H, et al. Opto-thermal dynamics of thin-film optical limiters based on the VO2 phase transition[J]. Optical Materials Express, 2023, 13(1): 41-52. doi: 10.1364/OME.472347
    [13] 叶庆, 李仰亮, 吴云龙, 等. 立方涡旋相位掩模板编码成像系统激光致盲防护性能研究(特邀)[J]. 激光与光电子学进展, 2024, 61(20): 20110101. (查阅网上资料, 请核对标黄中标黄信息).

    YE Q, LI Y L, WU Y L, et al. Research on laser blinding protection performance of cubic-vortex phase mask coding imaging system (invited)[J]. Laser & Optoelectronics Progress, 2024, 61(20): 20110101.
    [14] 吕泽, 方佑, 冯迢, 等. 非线性光限幅材料原理、性能表征及研究进展[J]. 中国光学(中英文), 2022, 15(4): 625-639. doi: 10.37188/CO.2021-0195

    LV Z, FANG Y, FENG T, et al. The principle, performance characterization and research progress of nonlinear optical limiting materials[J]. Chinese Optics, 2022, 15(4): 625-639. (in Chinese). doi: 10.37188/CO.2021-0195
    [15] 吕婷婷, 付天舒, 刘东明, 等. 带宽可调谐的太赫兹超构材料半波片器件[J]. 中国光学(中英文), 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198

    LV T T, FU T SH, LIU D M, et al. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. (in Chinese). doi: 10.37188/CO.2022-0198
    [16] HOWES A, ZHU ZH H, CURIE D, et al. Optical limiting based on Huygens’ metasurfaces[J]. Nano Letters, 2020, 20(6): 4638-4644. doi: 10.1021/acs.nanolett.0c01574
    [17] GUAN H, REN F F, LIANG SH H, et al. Ultra-high transmission broadband tunable VO2 optical limiter[J]. Laser & Photonics Reviews, 2023, 17(4): 2200653.
    [18] DOWSKI E R, CATHEY W T. Extended depth of field through wave-front coding[J]. Applied Optics, 1995, 34(11): 1859-1866. doi: 10.1364/AO.34.001859
    [19] YE Q, WU Y L, ZHANG H, et al. Experimental damage thresholds of a laser suppression imaging system using a cubic phase plate[J]. Chinese Optics Letters, 2023, 21(4): 041403. doi: 10.3788/COL202321.041403
    [20] LI Y L, YE Q, WANG L, et al. Analysis of laser-protection performance of asymmetric-phase-mask wavefront-coding imaging systems[J]. Current Optics and Photonics, 2023, 7(1): 1-14.
    [21] 赵惠, 魏静萱, 庞志海, 等. 波前编码超分辨成像技术[J]. 红外与激光工程, 2016, 45(4): 0422003. doi: 10.3788/irla201645.0422003

    ZHAO H, WEI J X, PANG ZH H, et al. Wave-front coded super-resolution imaging technique[J]. Infrared and Laser Engineering, 2016, 45(4): 0422003. (in Chinese). doi: 10.3788/irla201645.0422003
    [22] WANG L, YE Q, DOU X N, et al. Anti-cat-eye effect imaging technique based on the light-field imaging technique[J]. Journal of Electronic Imaging, 2019, 28(5): 053020.
    [23] LI Y L, YE Q, WANG L, et al. Analysis of laser-protection performance of asymmetric-phase-mask wavefront-coding imaging systems[J]. Current Optics and Photonics, 2023, 7(1): 1-14. (查阅网上资料, 本条文献与第20条文献重复, 请确认).
    [24] RITT G, SCHWARZ B, EBERLE B. Preventing image information loss of imaging sensors in case of laser dazzle[J]. Optical Engineering, 2019, 58(1): 013109.
    [25] RITT G, EBERLE B. Use of complementary wavelength bands for laser dazzle protection[J]. Optical Engineering, 2020, 59(1): 015106.
    [26] QIAO Y, XU X P, LIU T, et al. Design of a high-numerical-aperture digital micromirror device camera with high dynamic range[J]. Applied Optics, 2015, 54(1): 60-70. doi: 10.1364/AO.54.000060
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-08
  • 修回日期:  2025-09-02
  • 录用日期:  2025-09-18
  • 网络出版日期:  2025-09-27

目录

    /

    返回文章
    返回