Intense light interference suppression technique based on regional flipping of digital micromirror device
-
摘要:
为应对强激光对光电探测器成像的干扰与致眩威胁,本文提出并验证了一种基于数字微镜器件(DMD)区域翻转的动态激光干扰抑制方法。该方法通过一个二次成像光路,将DMD置于一次像面,通过实时识别并翻转对应于激光干扰区域的微镜,将高功率干扰能量偏转出主光路,从而在保护探测器的同时保留大部分视场的有效图像信息。我们首先通过光学仿真验证了该方案的可行性,随后搭建实验平台进行了系统性测试。此外,本研究还量化控制DMD翻转的掩膜半径对抑制效果的影响,验证了当翻转区域大于干扰光斑时能达到最优抑制效果。实验结果表明,DMD区域翻转对不同功率和不同入射角的激光干扰均能实现有效抑制。与无抑制时相比,探测器接收的干扰功率显著降低:在激光离轴入射时实现超过28.5 dB的抗激光干扰阈值提升,当激光干扰平行于光轴入射时可实现超过30 dB的抗激光干扰阈值提升。与传统图像处理方法相比,该方法在强光干扰场景下能尽可能保留图像信息量。该技术为光电系统在强光干扰环境下保持稳定成像提供了高效、简洁的解决方案。
-
关键词:
- 数字微镜器件(DMD) /
- 强光干扰抑制 /
- 掩膜生成 /
- 区域翻转
Abstract:To address the interference and dazzling threats posed by high-power lasers to the imaging of detectors, this paper proposes and validates a dynamic laser interference suppression method based on regional flipping of digital micromirror device (DMD). This method employs a secondary imaging optical path, placing the DMD at the primary image plane. Through real-time identification and flipping of micromirrors corresponding to the laser interference region, high-power interference energy is deflected out of the main optical path, thereby protecting the detector while retaining effective image information of most of the field of view. First, we verified the feasibility of this scheme through optical simulations, and subsequently built an experimental platform for systematic testing. Furthermore, this study quantifies the influence of the mask radius controlling DMD flipping on the suppression effect, verifying that the optimal suppression effect is achieved when the flipped region is larger than the interference spot. Experimental results demonstrate that DMD regional flipping nethod can effectively suppress laser interference across different laser powers and incident angles. Compared with the scenario without suppression, the interference power received by the detector is significantly reduced: when laser incidence is off-axis, the laser interference resistance threshold is increased by more than 28.5 dB; when laser interference occurs with incidence parallel to the optical axis, the laser interference resistance threshold can be enhanced by more than 30 dB. In comparison with traditional image processing methods, this method can retain the maximum amount of image information under strong light jamming scenarios. Technology provides an efficient and concise solution for photoelectric systems to maintain stable imaging in strong light interference environments.
-
表 1 不同入射角下激光干扰在焦平面处功率Interference laser power with different incident angles at the focal plane
入射角(°) 0 6 12 18 功率(μW) 80.9 91.7 66.8 57.0 表 2 不同翻转半径激光干扰抑制后探测器接收功率密度
Table 2. Detector received power density laser interference suppression with different flip radii
掩膜半径(pixel) 抑制后功率(μW)
(入射角0)抑制后功率(μW)
(入射角18°)10 2.49 3.37 20 0.62 0.72 30 0.43 0.46 40 0.39 0.40 50 0.35 0.36 表 3 干扰抑制前后探测器接收功率对比 (入射角0°)
Table 3. Comparison of detector received power density before and after interference suppression (incidence angle 0°)
入瞳处激光干扰功率
密度(W/cm2)焦平面抑制前
功率(μW)焦平面抑制后
功率(μW)抑制能力
(dB)2.32×10−2 431.0 0.43 30.01 1.56×10−2 273.0 0.27 30.05 8.31×10−3 150.2 0.15 30.01 2.83×10−3 52.0 0.05 30.17 1.73×10−3 32.1 0.03 30.29 1.33×10−3 24.6 0.02 30.90 8.99×10−4 16.67 0.01 32.22 表 4 干扰抑制前后探测器接收功率对比 (入射角6°)
Table 4. Comparison of detector received power density before and after interference suppression (incidence angle 6°)
入瞳处激光干扰功率
密度(W/cm2)焦平面抑制前
功率(μW)焦平面抑制后
功率(μW)抑制能力
(dB)2.32×10−2 794.0 0.53 31.76 1.56×10−2 462.0 0.31 31.73 8.31×10−3 294.0 0.20 31.67 2.83×10−3 91.7 0.06 31.84 1.73×10−3 59.38 0.04 31.72 1.33×10−3 42.28 0.03 31.49 8.99×10−4 30.71 0.02 31.86 表 5 干扰抑制前后探测器接收功率对比 (入射角12°)
Table 5. Comparison of detector received power density before and after interference suppression (incidence angle 12°)
入瞳处激光干扰功率
密度(W/cm2)焦平面抑制前
功率(μW)焦平面抑制后
功率(μW)抑制能力
(dB)2.32×10−2 542.0 0.76 28.53 1.56×10−2 308.0 0.40 28.86 8.31×10−3 201.0 0.26 28.88 2.83×10−3 66.8 0.08 29.22 1.73×10−3 42.4 0.05 29.28 1.33×10−3 30.8 0.04 28.86 8.99×10−4 21.91 0.03 28.63 表 6 干扰抑制前后探测器接收功率对比(入射角18°)
Table 6. Comparison of detector received power density before and after interference suppression (incidence angle 18°)
入瞳处激光干扰功率
密度(W/cm2)焦平面抑制前
功率(μW)焦平面抑制后
功率(μW)抑制能力
(dB)2.32×10−2 422.0 0.40 30.23 1.56×10−2 232.0 0.23 30.04 8.31×10−3 154.0 0.13 30.74 2.83×10−3 57.0 0.05 30.57 1.73×10−3 37.8 0.03 31.00 1.33×10−3 28.7 0.02 31.56 8.99×10−4 21.2 0.02 30.25 -
[1] 曹生珠, 何延春, 王健, 等. 卫星用高能激光防护技术发展现状[J]. 真空与低温, 2024, 30(1): 1-9.CAO SH ZH, HE Y CH, WANG J, et al. Development status of high energy laser protection technology for satellites[J]. Vacuum and Cryogenics, 2024, 30(1): 1-9. (in Chinese). [2] 陈健, 高慧斌. 高重频CO2激光干扰技术研究[J]. 中国光学, 2018, 11(6): 983-990. doi: 10.3788/co.20181106.0983CHEN J, GAO H B. Research on the interference technology of high repetition frequency CO2 laser[J]. Chinese Optics, 2018, 11(6): 983-990. (in Chinese). doi: 10.3788/co.20181106.0983 [3] 李仰亮, 叶庆, 吴云龙, 等. 光电成像系统激光防护技术研究进展(特邀)[J]. 红外与激光工程, 2023, 52(6): 20230192. doi: 10.3788/IRLA20230192LI Y L, YE Q, WU Y L, et al. Research progress of laser protection technology for optoelectronic imaging system (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230192. (in Chinese). doi: 10.3788/IRLA20230192 [4] 陈京生, 李清, 吴红, 等. 国外激光武器及其标准化的研究进展[J]. 兵器装备工程学报, 2023, 44(10): 165-172.CHEN J SH, LI Q, WU H, et al. Research progress of laser weapons and its standardization abroad[J]. Journal of Ordnance Equipment Engineering, 2023, 44(10): 165-172. (in Chinese). [5] HONG L H, HU CH Y, LIU Y Y, et al. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation[J]. PhotoniX, 2023, 4(1): 11. doi: 10.1186/s43074-023-00088-2 [6] 姜玉刚, 刘华松, 王利栓, 等. 卫星激光防护薄膜窗口的设计与制备技术研究[J]. 中国光学, 2019, 12(4): 804-809. doi: 10.3788/co.20191204.0804JIANG Y G, LIU H S, WANG L SH, et al. Design and preparation technology of laser protective film window of satellite[J]. Chinese Optics, 2019, 12(4): 804-809. (in Chinese). doi: 10.3788/co.20191204.0804 [7] ZHENG J Y, LI Z J, ZHANG M Q, et al. New type of coatings combining invisibility and high power laser protection function[J]. Ceramics International, 2024, 50(7): 11442-11450. doi: 10.1016/j.ceramint.2024.01.044 [8] 朱锦鹏, 马壮, 高丽红, 等. 基于等离子喷涂的反射型激光防护涂层研究[J]. 中国光学, 2017, 10(5): 578-587. doi: 10.3788/co.20171005.0578ZHU J P, MA ZH, GAO L H, et al. Reflective laser protective coating based on plasma spraying[J]. Chinese Optics, 2017, 10(5): 578-587. (in Chinese). doi: 10.3788/co.20171005.0578 [9] 李荣斌, 邢悦, 张志玺, 等. 等离子喷涂YSZ热障涂层的工艺研究[J]. 表面技术, 2024, 53(7): 217-229.LI R B, XING Y, ZHANG ZH X, et al. Plasma spraying process of YSZ thermal barrier coatings[J]. Surface Technology, 2024, 53(7): 217-229. [10] ZHU J P, MA ZH, GAO L H, et al. Influence of microstructure on the optical property of plasma-sprayed Al, Cu, and Ag coatings[J]. Materials & Design, 2016, 111: 192-197. [11] WANG Z X, JI X W, DONG N N, et al. Femtosecond laser-induced phase transition in VO2 films[J]. Optics Express, 2022, 30(26): 47421-47429. doi: 10.1364/OE.477910 [12] TOGNAZZI A, GANDOLFI M, LI B H, et al. Opto-thermal dynamics of thin-film optical limiters based on the VO2 phase transition[J]. Optical Materials Express, 2023, 13(1): 41-52. doi: 10.1364/OME.472347 [13] 叶庆, 李仰亮, 吴云龙, 等. 立方涡旋相位掩模板编码成像系统激光致盲防护性能研究(特邀)[J]. 激光与光电子学进展, 2024, 61(20): 20110101. (查阅网上资料, 请核对标黄中标黄信息).YE Q, LI Y L, WU Y L, et al. Research on laser blinding protection performance of cubic-vortex phase mask coding imaging system (invited)[J]. Laser & Optoelectronics Progress, 2024, 61(20): 20110101. [14] 吕泽, 方佑, 冯迢, 等. 非线性光限幅材料原理、性能表征及研究进展[J]. 中国光学(中英文), 2022, 15(4): 625-639. doi: 10.37188/CO.2021-0195LV Z, FANG Y, FENG T, et al. The principle, performance characterization and research progress of nonlinear optical limiting materials[J]. Chinese Optics, 2022, 15(4): 625-639. (in Chinese). doi: 10.37188/CO.2021-0195 [15] 吕婷婷, 付天舒, 刘东明, 等. 带宽可调谐的太赫兹超构材料半波片器件[J]. 中国光学(中英文), 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198LV T T, FU T SH, LIU D M, et al. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. (in Chinese). doi: 10.37188/CO.2022-0198 [16] HOWES A, ZHU ZH H, CURIE D, et al. Optical limiting based on Huygens’ metasurfaces[J]. Nano Letters, 2020, 20(6): 4638-4644. doi: 10.1021/acs.nanolett.0c01574 [17] GUAN H, REN F F, LIANG SH H, et al. Ultra-high transmission broadband tunable VO2 optical limiter[J]. Laser & Photonics Reviews, 2023, 17(4): 2200653. [18] DOWSKI E R, CATHEY W T. Extended depth of field through wave-front coding[J]. Applied Optics, 1995, 34(11): 1859-1866. doi: 10.1364/AO.34.001859 [19] YE Q, WU Y L, ZHANG H, et al. Experimental damage thresholds of a laser suppression imaging system using a cubic phase plate[J]. Chinese Optics Letters, 2023, 21(4): 041403. doi: 10.3788/COL202321.041403 [20] LI Y L, YE Q, WANG L, et al. Analysis of laser-protection performance of asymmetric-phase-mask wavefront-coding imaging systems[J]. Current Optics and Photonics, 2023, 7(1): 1-14. [21] 赵惠, 魏静萱, 庞志海, 等. 波前编码超分辨成像技术[J]. 红外与激光工程, 2016, 45(4): 0422003. doi: 10.3788/irla201645.0422003ZHAO H, WEI J X, PANG ZH H, et al. Wave-front coded super-resolution imaging technique[J]. Infrared and Laser Engineering, 2016, 45(4): 0422003. (in Chinese). doi: 10.3788/irla201645.0422003 [22] WANG L, YE Q, DOU X N, et al. Anti-cat-eye effect imaging technique based on the light-field imaging technique[J]. Journal of Electronic Imaging, 2019, 28(5): 053020. [23] LI Y L, YE Q, WANG L, et al. Analysis of laser-protection performance of asymmetric-phase-mask wavefront-coding imaging systems[J]. Current Optics and Photonics, 2023, 7(1): 1-14. (查阅网上资料, 本条文献与第20条文献重复, 请确认). [24] RITT G, SCHWARZ B, EBERLE B. Preventing image information loss of imaging sensors in case of laser dazzle[J]. Optical Engineering, 2019, 58(1): 013109. [25] RITT G, EBERLE B. Use of complementary wavelength bands for laser dazzle protection[J]. Optical Engineering, 2020, 59(1): 015106. [26] QIAO Y, XU X P, LIU T, et al. Design of a high-numerical-aperture digital micromirror device camera with high dynamic range[J]. Applied Optics, 2015, 54(1): 60-70. doi: 10.1364/AO.54.000060 -