留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间相机光学系统设计及热稳定性分析

陈力 刘俊豪 毕诗文 吴北辰 付天骄 张星祥

陈力, 刘俊豪, 毕诗文, 吴北辰, 付天骄, 张星祥. 空间相机光学系统设计及热稳定性分析[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0097
引用本文: 陈力, 刘俊豪, 毕诗文, 吴北辰, 付天骄, 张星祥. 空间相机光学系统设计及热稳定性分析[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0097
CHEN Li, LIU Jun-hao, BI Shi-wen, WU Bei-chen, FU Tian-jiao, ZHANG Xing-xiang. Design of space optical systems and analysis of their thermal stability[J]. Chinese Optics. doi: 10.37188/CO.2025-0097
Citation: CHEN Li, LIU Jun-hao, BI Shi-wen, WU Bei-chen, FU Tian-jiao, ZHANG Xing-xiang. Design of space optical systems and analysis of their thermal stability[J]. Chinese Optics. doi: 10.37188/CO.2025-0097

空间相机光学系统设计及热稳定性分析

cstr: 32171.14.CO.2025-0097
基金项目: 长春光机所“旭光人才计划”(No. E4X011Y6U0)
详细信息
    作者简介:

    陈 力(1998—),男,安徽阜阳人,硕士研究生,2021年于长春理工大学光电工程学院获得工学学士学位,主要从事光学设计方面的研究。E-mail:3170409219@qq.com

    张星祥(1977—),男,云南大理人,博士,二级研究员,2006年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间宽幅成像技术、精密装调与拼接技术、在轨测试与处理方面的研究。E-mail:jan_zxx@163.com

  • 中图分类号: TP394.1;TH691.9

Design of space optical systems and analysis of their thermal stability

Funds: Supported by
  • 摘要:

    离轴反射式光学系统可用于对地遥感与测绘,因此要求光学系统兼具大视场、高像质与稳定内方位元素。针对传统PW法所得初始结构轴外像质量差、相机成像过程中存在指向热漂移等问题。本文推导了孔径光阑在次镜处、主三镜沿轴同距条件下三反光学系统结构像差系数,并引入主、三镜四次非球面项像差,增加优化变量,构建像质评价函数,结合远心约束条件,利用GA-SQP算法得到视场离轴下准远心的三反初始结构。进一步优化得到一款焦距260 mm、F数为10,视场为7×30°准远心离轴三反光学系统,其MTF在77 lp/mm处大于0.25,最大畸变为2%,最大主光线倾角为2.3°。针对该设计,采用微晶玻璃为基底,钛合金为结构材料,对系统进行有限元热分析。基于TRIAD算法,定量分析系统光轴在6.8 °C温差条件下绕相机坐标系X/Y/Z三轴旋转变化:绕X轴−0.728″、绕Y轴1.0816″、绕Z轴11.045″,表明光学系统具有较高热稳定性的同时也对无控条件下在轨测绘数据误差修正具有重要意义。

     

  • 图 1  离轴三反系统光路图

    Figure 1.  Ray diagram of the off-axis three-mirror optical system

    图 2  基于矩阵光学的近轴光线追迹

    Figure 2.  Paraxial Ray Tracing Based on Matrix Optics

    图 3  无光束遮拦离轴三反光学系统

    Figure 3.  Unobscured Off-Axis Three-Mirror Optical System

    图 4  基于GA—SQP算法的优化示意图

    Figure 4.  Optimization Schematic Based on GA-SQP Algorithm

    图 5  基于GA算法的目标函数迭代曲线

    Figure 5.  Objective Function Convergence Curve Based on the GA Algorithm

    图 6  初始光学系统光路图

    Figure 6.  Initial Optical System Layout

    图 7  初始系统的MTF曲线

    Figure 7.  MTF Curve of the Initial System

    图 8  初始系统的网格畸变

    Figure 8.  Grid Distortion of the Initial System

    图 9  初始系统点列图

    Figure 9.  Spot Diagram of the Initial System

    图 10  最终光学系统光路图

    Figure 10.  Final Optical System Layout

    图 11  最终光学系统MTF曲线

    Figure 11.  MTF Curve of the Final Optical System

    图 12  最终光学系统点列图

    Figure 12.  Spot Diagram of the Final Optical System

    图 13  最终光学系统的网格畸变图

    Figure 13.  Grid Distortion of the Final Optical System

    图 14  基于 TRIAD 算法的三轴计算精度蒙特卡洛分析(质心计算精度0.1像素)

    Figure 14.  Monte Carlo analysis of TRIAD-based three-axis accuracy with 0.1-pixel centroiding precision

    图 15  基于 TRIAD 算法的三轴计算精度蒙特卡洛分析(质心计算精度0.05像素)

    Figure 15.  Monte Carlo analysis of TRIAD-based three-axis accuracy with 0.05-pixel centroiding precision

    图 16  基于 TRIAD 算法的三轴计算精度蒙特卡洛分析(质心计算精度0.01像素)

    Figure 16.  Monte Carlo analysis of TRIAD-based three-axis accuracy with 0.01-pixel centroiding precision

    图 17  系统光机结构

    Figure 17.  Opto-mechanical Structure of the System

    图 18  光机结构有限元分析

    Figure 18.  Finite Element Analysis (FEA) of the Opto-mechanical Structure

    表  1  光学系统设计指标

    Table  1.   Design Specifications of the Optical System

    ParameterTechnical target
    Focal length/mm260
    Entrance pupil diameter/mm26
    Waveband/nm380-780
    Field of view/°7×30
    Pixel size/μm6.45
    Distortion<2.5%
    下载: 导出CSV

    表  2  变量取值范围

    Table  2.   Value Ranges of the Variables

    Variables Value Ranges
    $ {\alpha _2} $ [0.1,10]
    $ {\beta _1} $ [0.1,10]
    $ {\beta _2} $ [0.1,10]
    $ {k_1} $ [−30,30]
    $ {k_2} $ [−30,30]
    $ {k_3} $ [−30,30]
    $ {A_{41}} $ [−1E-9, 1E-9]
    $ {A_{43}} $ [−1E-9, 1E-9]
    下载: 导出CSV

    表  3  评价函数权重取值

    Table  3.   Weight Values of the Evaluation Function

    WightValue Ranges
    W140
    W280
    W360
    W430
    W52
    下载: 导出CSV

    表  4  基于GA-SQP算法优化结果

    Table  4.   Optimization Results Based on the GA-SQP Algorithm

    Variable Value
    $ {\alpha _2} $ 1.3629
    $ {\beta _1} $ 3.2459
    $ {\beta _2} $ 0.3629
    $ {k_1} $ 1.8096
    $ {k_2} $ 0.7225
    $ {k_3} $ 0.0952
    $ {A_{41}} $ 8.71565e-11
    $ {A_{43}} $ 8.92229e-11
    下载: 导出CSV

    表  5  基于GA-SQP算法得到的初始结构参数

    Table  5.   Initial Optical System Parameters from GA-SQP Optimization Algorithm

    名称 半径/mm 厚度/mm 圆锥常数 四次项
    PM 441.4465 119.3785 1.8096 8.71565e-11
    SM 154.9514 119.3785 0.7225 0
    TM 238.7571 162.7017 0.0952 8.92229e-11
    下载: 导出CSV

    表  6  局部优化后系统参数

    Table  6.   Locally Optimized System Parameters

    名称 半径/mm 厚度/mm 圆锥常数 4次项 6次项 8次项
    PM −429.35 −111.9 1.8748 1.824E-10 −2.832E-14 7.367E-19
    SM −160 111.9 1.4195 0 0 0
    TM −242.5 −163.2 0.7177 −6.55E-9 −8.30E-14 1.447E-18
    下载: 导出CSV

    表  7  有限元分析结果

    Table  7.   FEA Results

    名称 Tx/μm Ty/μm Tz/μm Rx/″ Ry/″ Rz/″
    PM 7.76 −6.73 1.75 3.93 1.64 4.26
    SM 4.85 −6.72 10.15 3.75 0.0343 3.74
    TM 9.44 −5.02 1.77 0.469 −2.994 3.031
    下载: 导出CSV
  • [1] 苏云, 葛婧菁, 王业超, 等. 航天高分辨率对地光学遥感载荷研究进展[J]. 中国光学, 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085

    SU Y, GE J J, WANG Y CH, et al. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. (in Chinese). doi: 10.37188/CO.2022-0085
    [2] 李峰, 万秋华, 刘萌萌, 等. 低轨光学卫星同轨立体成像姿态规划与控制方法[J]. 光学 精密工程, 2022, 30(14): 1682-1693. doi: 10.37188/OPE.20223014.1682

    LI F, WAN Q H, LIU M M, et al. Attitude planning and control method of low-orbit optical satellite along-track stereoscopic imaging[J]. Optics and Precision Engineering, 2022, 30(14): 1682-1693. (in Chinese). doi: 10.37188/OPE.20223014.1682
    [3] SANDERS G H. The thirty meter telescope (TMT): an international observatory[J]. Journal of Astrophysics and Astronomy, 2013, 34(2): 81-86. doi: 10.1007/s12036-013-9169-5
    [4] SUN Y H, SUN Y Q, CHEN X, et al. Design of a free-form off-axis three-mirror optical system with a low f-number based on the same substrate[J]. Applied Optics, 2022, 61(24): 7033-7040. doi: 10.1364/AO.457646
    [5] 缪麟, 田博宇, 孙年春, 等. 基于量子遗传算法的自由曲面离轴反射光学系统设计[J]. 红外与激光工程, 2021, 50(12): 20210365. doi: 10.3788/IRLA20210365

    MIAO L, TIAN B Y, SUN N C, et al. Design of freeform surface off-axis reflective optical systems based on quantum genetic algorithm[J]. Infrared and Laser Engineering, 2021, 50(12): 20210365. (in Chinese). doi: 10.3788/IRLA20210365
    [6] LIU J, WEI H, FAN H J. A novel method for finding the initial structure parameters of optical systems via a genetic algorithm[J]. Optics Communications, 2016, 361: 28-35. doi: 10.1016/j.optcom.2015.10.036
    [7] TAN W, JI H R, MO Y, et al. Automatic design of an extreme ultraviolet lithography objective system based on the Seidel aberration theory[J]. Applied Optics, 2022, 61(29): 8633-8640. doi: 10.1364/AO.467761
    [8] 操超, 廖胜, 廖志远, 等. 基于自由曲面的大视场离轴反射光学系统设计[J]. 光学学报, 2020, 40(8): 0808001. doi: 10.3788/AOS202040.0808001

    CHAO CH, LIAO SH, LIAO ZH Y, et al. Design of off-axis reflective optical system with large field-of-view based on freeform surfaces[J]. Acta Optica Sinica, 2020, 40(8): 0808001. (in Chinese). doi: 10.3788/AOS202040.0808001
    [9] 曲正, 钟兴, 张坤, 等. 基于联合像差求解的紧凑型大视场光学设计[J]. 光学学报, 2022, 42(21): 2122001. doi: 10.3788/AOS202242.2122001

    QU ZH, ZHONG X, ZHANG K, et al. Compact large field-of-view optical design based on joint aberration solution[J]. Acta Optica Sinica, 2022, 42(21): 2122001. (in Chinese). doi: 10.3788/AOS202242.2122001
    [10] JIANG F, WANG L, DENG H X, et al. Thermal deformation analysis of a star camera to ensure its high attitude measurement accuracy in orbit[J]. Remote Sensing, 2024, 16(23): 4567. doi: 10.3390/rs16234567
    [11] 宋俊儒, 童卫明, 金忠瑞, 等. 空间望远镜的设计仿真和低温波前测试[J]. 光学 精密工程, 2025, 33(6): 895-904. doi: 10.37188/OPE.20253306.0895

    SONG J R, TONG W M, JIN ZH R, et al. Performance simulation and wavefront measurement of telescope at cryogenic temperature[J]. Optics and Precision Engineering, 2025, 33(6): 895-904. (in Chinese). doi: 10.37188/OPE.20253306.0895
    [12] 徐义奇, 王硕, 严微, 等. 神舟飞船高精度星敏感器设计概述及在轨验证[J]. 航天控制, 2024, 42(5): 3-8.

    XU Y Q, WANG SH, YAN W, et al. Design and validation of high precision star tracker on SZ spacecraft[J]. Aerospace Control, 2024, 42(5): 3-8. (in Chinese).
    [13] 巩盾. 空间遥感测绘光学系统研究综述[J]. 中国光学, 2015, 8(5): 714-724. doi: 10.3788/co.20150805.0714

    GONG D. Review on mapping space remote sensor optical system[J]. Chinese Optics, 2015, 8(5): 714-724. (in Chinese). doi: 10.3788/co.20150805.0714
    [14] REN ZH G, LI X Y, NI D W. Ultra-wide field multispectral integrated spatial optical system design[J]. Proceedings of SPIE, 2019, 11341: 113410L.
    [15] 陆志贤, 李旭阳, 任志广, 等. 基于自由曲面的紧凑型大视场离轴三反空间光学系统设计[J]. 光子学报, 2024, 53(9): 0922002.

    LU ZH X, LI X Y, REN ZH G, et al. Design of compact large field off-axis three-mirror space optical system based on freeform surface[J]. Acta Photonica Sinica, 2024, 53(9): 0922002. (in Chinese).
    [16] 王江涛, 王虎, 马占鹏, 等. 基于受控遗传算法的离轴三反光学系统设计[J]. 光子学报, 2024, 53(12): 1222002. doi: 10.3788/gzxb20245312.1222002

    WANG J T, WANG H, MA ZH P, et al. Design of off-axis three-mirror optical system based on controlled genetic algorithm[J]. Acta Photonica Sinica, 2024, 53(12): 1222002. (in Chinese). doi: 10.3788/gzxb20245312.1222002
    [17] CAO CH, LIAO SH, LIAO ZH Y, et al. Initial configuration design method for off-axis reflective optical systems using nodal aberration theory and genetic algorithm[J]. Optical Engineering, 2019, 58(10): 105101.
    [18] QU ZH, ZHONG X, ZHANG K, et al. Automatic initial configuration in off-axis reflective optical system design using combined nodal and Seidel aberration[J]. Applied Optics, 2022, 61(13): 3630-3640. doi: 10.1364/AO.457092
    [19] TIAN M L, XUE CH X. Design of a zoom head-up display optical system based on a nodal aberration theory[J]. Applied Optics, 2024, 63(18): 5006-5017. doi: 10.1364/AO.516685
    [20] 王艳丽, 王密, 董志鹏, 等. 基于姿态误差时空补偿的高分五号02星全谱段影像定位精度提升方法[J]. 光学学报, 2024, 44(12): 1228004. doi: 10.3788/AOS231500

    WANG Y L, WANG M, DONG ZH P, et al. Positioning accuracy improvement of GF-5B VIMS images based on attitude error spatiotemporal compensation[J]. Acta Optica Sinica, 2024, 44(12): 1228004. (in Chinese). doi: 10.3788/AOS231500
    [21] 李德仁, 张过, 蒋永华, 等. 国产光学卫星影像几何精度研究[J]. 航天器工程, 2016, 25(1): 1-9.

    LI D R, ZHANG G, JIANG Y H, et al. Research on image geometric precision of domestic optical satellites[J]. Spacecraft Engineering, 2016, 25(1): 1-9. (in Chinese).
    [22] 翟国芳, 于庆盛, 王蕴龙, 等. 双线阵测绘相机视轴抖动实时测量[J]. 中国光学(中英文), 2023, 16(4): 878-888. doi: 10.37188/CO-2022-0175

    ZHAI G F, YU Q SH, WANG Y L, et al. Real-time measurement for boresight vibration of dual line split surveying and mapping cameras[J]. Chinese Optics, 2023, 16(4): 878-888. (in Chinese). doi: 10.37188/CO-2022-0175
    [23] 曲友阳, 钟兴, 戴路, 等. 光学遥感卫星精密敏捷成像控制技术综述[J]. 光学 精密工程, 2024, 32(5): 678-693. doi: 10.37188/OPE.20243205.0678

    QU Y Y, ZHONG X, DAI L, et al. Review on precision and agile imaging control technology of optical remote sensing satellites[J]. Optics and Precision Engineering, 2024, 32(5): 678-693. (in Chinese). doi: 10.37188/OPE.20243205.0678
    [24] SHUSTER M D, OH S D. Three-axis attitude determination from vector observations[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(1): 70-77. doi: 10.2514/3.19717
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-10-11

目录

    /

    返回文章
    返回