Design of space optical systems and analysis of their thermal stability
-
摘要:
离轴反射式光学系统可用于对地遥感与测绘,因此要求光学系统兼具大视场、高像质与稳定内方位元素。针对传统PW法所得初始结构轴外像质量差、相机成像过程中存在指向热漂移等问题。本文推导了孔径光阑在次镜处、主三镜沿轴同距条件下三反光学系统结构像差系数,并引入主、三镜四次非球面项像差,增加优化变量,构建像质评价函数,结合远心约束条件,利用GA-SQP算法得到视场离轴下准远心的三反初始结构。进一步优化得到一款焦距260 mm、F数为10,视场为7×30°准远心离轴三反光学系统,其MTF在77 lp/mm处大于0.25,最大畸变为2%,最大主光线倾角为2.3°。针对该设计,采用微晶玻璃为基底,钛合金为结构材料,对系统进行有限元热分析。基于TRIAD算法,定量分析系统光轴在6.8 °C温差条件下绕相机坐标系X/Y/Z三轴旋转变化:绕X轴−0.728″、绕Y轴
1.0816 ″、绕Z轴11.045″,表明光学系统具有较高热稳定性的同时也对无控条件下在轨测绘数据误差修正具有重要意义。Abstract:Off-axis reflective optical systems are widely employed in Earth observation and mapping owing to their advantages of wide field of view (FOV), high image quality, and stable interior orientation elements. However, conventional designs based on the point-by-point (PW) method often suffer from degraded off-axis imaging performance and thermally induced pointing drift. In this study, the third-order aberration coefficients of a three-mirror optical system are analytically derived under the condition that the aperture stop is located at the secondary mirror and that the primary and tertiary mirrors are equally spaced along the optical axis. To further enhance imaging performance, fourth-order aspheric terms are introduced on both the primary and tertiary mirrors, thereby increasing the degrees of freedom for optimization. A comprehensive image-quality evaluation function incorporating quasi-telecentric constraints is constructed, and a hybrid genetic algorithm-sequential quadratic programming (GA-SQP) approach is employed to obtain an optimized initial configuration. The resulting system achieves a focal length of 260 mm, an F-number of 10, and a 7° × 30° FOV, with a modulation transfer function (MTF) above 0.25 at 77 lp/mm, a maximum distortion of 2%, and a maximum chief-ray angle of 2.3°. Microcrystalline glass and titanium alloy are adopted as the mirror substrate and structural materials, respectively. Finite-element thermal analysis is performed under a 6.8 °C temperature gradient, and the optical axis rotation, evaluated using the TRIAD algorithm, is −0.728″ about the X-axis,
1.0816 ″ about the Y-axis, and 11.045″ about the Z-axis. These results confirm the excellent thermal stability of the proposed design and underscore its potential for reducing in-orbit mapping errors under uncontrolled thermal environments. -
表 1 光学系统设计指标
Table 1. Design Specifications of the Optical System
Parameter Technical target Focal length/mm 260 Entrance pupil diameter/mm 26 Waveband/nm 380-780 Field of view/° 7×30 Pixel size/μm 6.45 Distortion <2.5% 表 2 变量取值范围
Table 2. Value Ranges of the Variables
Variables Value Ranges $ {\alpha _2} $ [0.1,10] $ {\beta _1} $ [0.1,10] $ {\beta _2} $ [0.1,10] $ {k_1} $ [−30,30] $ {k_2} $ [−30,30] $ {k_3} $ [−30,30] $ {A_{41}} $ [−1E-9, 1E-9] $ {A_{43}} $ [−1E-9, 1E-9] 表 3 评价函数权重取值
Table 3. Weight Values of the Evaluation Function
Wight Value Ranges W1 40 W2 80 W3 60 W4 30 W5 2 表 4 基于GA-SQP算法优化结果
Table 4. Optimization Results Based on the GA-SQP Algorithm
Variable Value $ {\alpha _2} $ 1.3629 $ {\beta _1} $ 3.2459 $ {\beta _2} $ 0.3629 $ {k_1} $ − 1.8096 $ {k_2} $ − 0.7225 $ {k_3} $ 0.0952 $ {A_{41}} $ − 8.71565 e-11$ {A_{43}} $ 8.92229 e-11表 5 基于GA-SQP算法得到的初始结构参数
Table 5. Initial Optical System Parameters from GA-SQP Optimization Algorithm
名称 半径/mm 厚度/mm 圆锥常数 四次项 PM − 441.4465 − 119.3785 − 1.8096 − 8.71565 e-11SM − 154.9514 119.3785 − 0.7225 0 TM − 238.7571 − 162.7017 0.0952 8.92229 e-11表 6 局部优化后系统参数
Table 6. Locally Optimized System Parameters
名称 半径/mm 厚度/mm 圆锥常数 4次项 6次项 8次项 PM −429.35 −111.9 − 1.8748 1.824E-10 −2.832E-14 7.367E-19 SM −160 111.9 − 1.4195 0 0 0 TM −242.5 −163.2 − 0.7177 −6.55E-9 −8.30E-14 1.447E-18 表 7 有限元分析结果
Table 7. FEA Results
名称 Tx/μm Ty/μm Tz/μm Rx/″ Ry/″ Rz/″ PM 7.76 −6.73 1.75 3.93 1.64 4.26 SM 4.85 −6.72 10.15 3.75 − 0.0343 3.74 TM 9.44 −5.02 1.77 0.469 −2.994 3.031 -
[1] 苏云, 葛婧菁, 王业超, 等. 航天高分辨率对地光学遥感载荷研究进展[J]. 中国光学, 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085SU Y, GE J J, WANG Y CH, et al. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. (in Chinese). doi: 10.37188/CO.2022-0085 [2] 李峰, 万秋华, 刘萌萌, 等. 低轨光学卫星同轨立体成像姿态规划与控制方法[J]. 光学 精密工程, 2022, 30(14): 1682-1693. doi: 10.37188/OPE.20223014.1682LI F, WAN Q H, LIU M M, et al. Attitude planning and control method of low-orbit optical satellite along-track stereoscopic imaging[J]. Optics and Precision Engineering, 2022, 30(14): 1682-1693. (in Chinese). doi: 10.37188/OPE.20223014.1682 [3] SANDERS G H. The thirty meter telescope (TMT): an international observatory[J]. Journal of Astrophysics and Astronomy, 2013, 34(2): 81-86. doi: 10.1007/s12036-013-9169-5 [4] SUN Y H, SUN Y Q, CHEN X, et al. Design of a free-form off-axis three-mirror optical system with a low f-number based on the same substrate[J]. Applied Optics, 2022, 61(24): 7033-7040. doi: 10.1364/AO.457646 [5] 缪麟, 田博宇, 孙年春, 等. 基于量子遗传算法的自由曲面离轴反射光学系统设计[J]. 红外与激光工程, 2021, 50(12): 20210365. doi: 10.3788/IRLA20210365MIAO L, TIAN B Y, SUN N C, et al. Design of freeform surface off-axis reflective optical systems based on quantum genetic algorithm[J]. Infrared and Laser Engineering, 2021, 50(12): 20210365. (in Chinese). doi: 10.3788/IRLA20210365 [6] LIU J, WEI H, FAN H J. A novel method for finding the initial structure parameters of optical systems via a genetic algorithm[J]. Optics Communications, 2016, 361: 28-35. doi: 10.1016/j.optcom.2015.10.036 [7] TAN W, JI H R, MO Y, et al. Automatic design of an extreme ultraviolet lithography objective system based on the Seidel aberration theory[J]. Applied Optics, 2022, 61(29): 8633-8640. doi: 10.1364/AO.467761 [8] 操超, 廖胜, 廖志远, 等. 基于自由曲面的大视场离轴反射光学系统设计[J]. 光学学报, 2020, 40(8): 0808001. doi: 10.3788/AOS202040.0808001CHAO CH, LIAO SH, LIAO ZH Y, et al. Design of off-axis reflective optical system with large field-of-view based on freeform surfaces[J]. Acta Optica Sinica, 2020, 40(8): 0808001. (in Chinese). doi: 10.3788/AOS202040.0808001 [9] 曲正, 钟兴, 张坤, 等. 基于联合像差求解的紧凑型大视场光学设计[J]. 光学学报, 2022, 42(21): 2122001. doi: 10.3788/AOS202242.2122001QU ZH, ZHONG X, ZHANG K, et al. Compact large field-of-view optical design based on joint aberration solution[J]. Acta Optica Sinica, 2022, 42(21): 2122001. (in Chinese). doi: 10.3788/AOS202242.2122001 [10] JIANG F, WANG L, DENG H X, et al. Thermal deformation analysis of a star camera to ensure its high attitude measurement accuracy in orbit[J]. Remote Sensing, 2024, 16(23): 4567. doi: 10.3390/rs16234567 [11] 宋俊儒, 童卫明, 金忠瑞, 等. 空间望远镜的设计仿真和低温波前测试[J]. 光学 精密工程, 2025, 33(6): 895-904. doi: 10.37188/OPE.20253306.0895SONG J R, TONG W M, JIN ZH R, et al. Performance simulation and wavefront measurement of telescope at cryogenic temperature[J]. Optics and Precision Engineering, 2025, 33(6): 895-904. (in Chinese). doi: 10.37188/OPE.20253306.0895 [12] 徐义奇, 王硕, 严微, 等. 神舟飞船高精度星敏感器设计概述及在轨验证[J]. 航天控制, 2024, 42(5): 3-8.XU Y Q, WANG SH, YAN W, et al. Design and validation of high precision star tracker on SZ spacecraft[J]. Aerospace Control, 2024, 42(5): 3-8. (in Chinese). [13] 巩盾. 空间遥感测绘光学系统研究综述[J]. 中国光学, 2015, 8(5): 714-724. doi: 10.3788/co.20150805.0714GONG D. Review on mapping space remote sensor optical system[J]. Chinese Optics, 2015, 8(5): 714-724. (in Chinese). doi: 10.3788/co.20150805.0714 [14] REN ZH G, LI X Y, NI D W. Ultra-wide field multispectral integrated spatial optical system design[J]. Proceedings of SPIE, 2019, 11341: 113410L. [15] 陆志贤, 李旭阳, 任志广, 等. 基于自由曲面的紧凑型大视场离轴三反空间光学系统设计[J]. 光子学报, 2024, 53(9): 0922002.LU ZH X, LI X Y, REN ZH G, et al. Design of compact large field off-axis three-mirror space optical system based on freeform surface[J]. Acta Photonica Sinica, 2024, 53(9): 0922002. (in Chinese). [16] 王江涛, 王虎, 马占鹏, 等. 基于受控遗传算法的离轴三反光学系统设计[J]. 光子学报, 2024, 53(12): 1222002. doi: 10.3788/gzxb20245312.1222002WANG J T, WANG H, MA ZH P, et al. Design of off-axis three-mirror optical system based on controlled genetic algorithm[J]. Acta Photonica Sinica, 2024, 53(12): 1222002. (in Chinese). doi: 10.3788/gzxb20245312.1222002 [17] CAO CH, LIAO SH, LIAO ZH Y, et al. Initial configuration design method for off-axis reflective optical systems using nodal aberration theory and genetic algorithm[J]. Optical Engineering, 2019, 58(10): 105101. [18] QU ZH, ZHONG X, ZHANG K, et al. Automatic initial configuration in off-axis reflective optical system design using combined nodal and Seidel aberration[J]. Applied Optics, 2022, 61(13): 3630-3640. doi: 10.1364/AO.457092 [19] TIAN M L, XUE CH X. Design of a zoom head-up display optical system based on a nodal aberration theory[J]. Applied Optics, 2024, 63(18): 5006-5017. doi: 10.1364/AO.516685 [20] 王艳丽, 王密, 董志鹏, 等. 基于姿态误差时空补偿的高分五号02星全谱段影像定位精度提升方法[J]. 光学学报, 2024, 44(12): 1228004. doi: 10.3788/AOS231500WANG Y L, WANG M, DONG ZH P, et al. Positioning accuracy improvement of GF-5B VIMS images based on attitude error spatiotemporal compensation[J]. Acta Optica Sinica, 2024, 44(12): 1228004. (in Chinese). doi: 10.3788/AOS231500 [21] 李德仁, 张过, 蒋永华, 等. 国产光学卫星影像几何精度研究[J]. 航天器工程, 2016, 25(1): 1-9.LI D R, ZHANG G, JIANG Y H, et al. Research on image geometric precision of domestic optical satellites[J]. Spacecraft Engineering, 2016, 25(1): 1-9. (in Chinese). [22] 翟国芳, 于庆盛, 王蕴龙, 等. 双线阵测绘相机视轴抖动实时测量[J]. 中国光学(中英文), 2023, 16(4): 878-888. doi: 10.37188/CO-2022-0175ZHAI G F, YU Q SH, WANG Y L, et al. Real-time measurement for boresight vibration of dual line split surveying and mapping cameras[J]. Chinese Optics, 2023, 16(4): 878-888. (in Chinese). doi: 10.37188/CO-2022-0175 [23] 曲友阳, 钟兴, 戴路, 等. 光学遥感卫星精密敏捷成像控制技术综述[J]. 光学 精密工程, 2024, 32(5): 678-693. doi: 10.37188/OPE.20243205.0678QU Y Y, ZHONG X, DAI L, et al. Review on precision and agile imaging control technology of optical remote sensing satellites[J]. Optics and Precision Engineering, 2024, 32(5): 678-693. (in Chinese). doi: 10.37188/OPE.20243205.0678 [24] SHUSTER M D, OH S D. Three-axis attitude determination from vector observations[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(1): 70-77. doi: 10.2514/3.19717 -