Development of a large-aperture wide-angle reflector for triple-band infrared applications
-
摘要:
多波段红外探测器可同步获取多波段辐射信息,在目标识别、分类、测温及信息提取等方面显著优于单波段红外探测器,因而成为红外探测器核心研究方向之一。三波段大口径宽角度红外反射镜作为多波段红外探测器的关键光学元件,其性能优劣直接决定探测精度。在设计阶段,本文选用Ge、ZnS和YbF3三种材料,基于高反射膜的设计理论,通过光谱叠加法结合TFCalc软件优化获得结构合理的红外反射镜膜系。在制备阶段,采用离子源辅助沉积,通过优化沉积工艺解决了膜层脱落的问题。在光谱测试阶段,通过膜厚误差实验和YbF3工艺实验解决了样品光谱漂移的现象。测试结果表明,该红外反射镜在45°入射时,3~5 µm波段平均反射率为96.93%;8~12 µm波段平均反射率为96.54%;1.064 µm反射率为94.64%,在270 mm×270 mm口径内3~5 µm、8~12 µm波段的光谱非均匀性为4.83%。参照国标GJB 2485A-2019作为环境测标准,所制备样品成功通过附着力测试和高低温测试,满足多波段红外探测器的使用要求。
Abstract:Multi-band infrared detectors can simultaneously capture radiation information across multiple wavelengths, offering significant advantages over single-band infrared detectors in target recognition, classification, temperature measurement, and information extraction. Consequently, they have become a central focus of infrared detector technology research. As a key optical component of multi-band infrared detectors, the performance of the three-band large-aperture wide-angle infrared mirror directly determines detection accuracy. In the design phase, this study selected three materials: Ge, ZnS, and YbF3, based on high-reflectivity coating design principles, and optimized a structurally robust infrared reflector coating system through spectral superposition combined with TFCalc software. During the preparation stage, ion-source-assisted deposition was employed, and the issue of film delamination was resolved by optimizing the deposition process. During spectral testing, problems related to spectral drift in the samples were addressed through film thickness error experiments and optimization of the YbF3 process. Test results indicate that, at an incident angle of 45°, the infrared mirror achieves an average reflectance of 96.93% in the 3−5 µm spectral band, 96.54% in the 8−12 µm spectral band, and 94.64% in the 1.064 µm spectral band, the spectral non-uniformity within the 270 mm×270 mm aperture for the 3−5 µm and 8−12 µm spectral bands is 4.83%. In accordance with the national standard GJB 2485A-2019 (Environmental Test Standard), the prepared samples successfully passed adhesion and high and low temperature tests, meeting the application requirements for multi-band infrared detectors.
-
表 1 红外反射镜的技术指标
Table 1. Technical specifications of infrared mirror
参数 规格 入射角 30°~60° 30°~60° 30°~60° 波长范围 1.064 μm 3~5 μm 8~12 μm 反射率 >93% >93% >93% 非均匀性 - 5% 5% 表 2 Ge、ZnS和YbF3沉积工艺参数
Table 2. Deposition process parameters of Ge, ZnS and YbF3
材料 沉积速率
/(nm∙s−1)本底真空
/(×10−4Pa)转速
/(rad∙min−1)沉积温度
/°CGe 0.4 5 25 150 ZnS 1.5 5 25 150 YbF3 0.5 5 25 150 表 3 第一层离子源工艺参数表
Table 3. Process parameters table of first-layer ion source
样品编号 膜层 阳极电压/V 离子束电流/A 1# Ge 80 0.4 2# 100 0.5 3# 120 0.4 4# 150 0.5 表 4 YbF3材料离子源工艺参数
Table 4. Process parameters of YbF3 material ion source
样品编号 材料 阳极电压/V 离子束电流/A 1# YbF3 100 1 2# 150 2 3# 200 3 -
[1] 唐利孬, 聂志强, 任丽, 等. 激光/可见光双波段复合光电制导组件共口径光学系统设计[J]. 光子学报, 2025, 54(6): 0622001. doi: 10.3788/gzxb20255406.0622001TANG L N, NIE Z Q, REN L, et al. Optical design of common aperture laser/visible light dual-band composite photoelectric guidance component[J]. Acta Photonica Sinica, 2025, 54(6): 0622001. (in Chinese). doi: 10.3788/gzxb20255406.0622001 [2] 耿海涛, 虞林瑶, 张葆. 大变倍比制冷型红外双波段变焦光学系统设计[J]. 中国光学(中英文), 2024, 17(6): 1431-1441. doi: 10.37188/CO.2024-0007GENG H T, YU L Y, ZHANG B. Design of cooled infrared dual-band zoom optical system with large-magnification-ratio[J]. Chinese Optics, 2024, 17(6): 1431-1441. (in Chinese). doi: 10.37188/CO.2024-0007 [3] 张璐, 李冬冰, 付志凯. 多谱段红外探测器组件的光学工程化设计[J]. 红外, 2025, 46(4): 20-26.ZHANG L, LI D B, FU ZH K. Optical engineering design of multispectral infrared detector assembly[J]. Infrared, 2025, 46(4): 20-26. (in Chinese). [4] 徐旭. 大口径主镜薄膜制备及其特性研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2018.XU X. Study on preparation and characterization of optical coatings for large-aperture primary mirrors[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2018. (in Chinese). [5] FIELD E S, KLETECKA D E. Impact of contamination and aging effects on the long-term laser damage resistance of SiO2/HfO2/TiO2 high reflection coatings for 1054 nm[J]. Optical Engineering, 2019, 58(10): 105105. [6] QI D, WANG X, CHENG Y ZH, et al. Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications[J]. Optical Materials, 2016, 62: 52-56. doi: 10.1016/j.optmat.2016.09.024 [7] ZHANG J K, LIU R H, ZHAO D P, et al. Design, fabrication and characterization of a thin infrared-visible bi-stealth film based on one-dimensional photonic crystal[J]. Optical Materials Express, 2019, 9(1): 195-202. doi: 10.1364/OME.9.000195 [8] HAO K Z, WANG X, ZHOU L, et al. Design of one-dimensional composite photonic crystal with high infrared reflectivity and low microwave reflectivity[J]. Optik, 2020, 216: 164794. doi: 10.1016/j.ijleo.2020.164794 [9] 王雅颖, 鲍学聪, 王长昊, 等. Ge/ZnSe一维光子晶体设计及其可见/红外反射光谱调控[J]. 有色金属工程, 2024, 14(11): 35-40,48.WANG Y Y, BAO X C, WANG CH H, et al. Design of Ge/ZnSe one-dimensional photonic crystal and visible/infrared reflectance spectroscopy control[J]. Nonferrous Metals Engineering, 2024, 14(11): 35-40,48. (in Chinese). [10] 唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006: 107-112.TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M]. Hangzhou: Zhejiang University Press, 2006: 107-112. (in Chinese). [11] 孟阳, 陶海军, 刘华松, 等. 厚度对ZnS薄膜光学特性与力学特性的影响[J]. 红外与激光工程, 2025, 54(3): 20240515. doi: 10.3788/IRLA20240515MENG Y, TAO H J, LIU H S, et al. Effect of thickness on the optical and mechanical properties of ZnS thin films[J]. Infrared and Laser Engineering, 2025, 54(3): 20240515. (in Chinese). doi: 10.3788/IRLA20240515 [12] 赵广宇, 徐莉, 范杰, 等. 衬底温度对电子束沉积ZnSe薄膜性能影响研究[J]. 光子学报, 2021, 50(6): 0631001.ZHAO G Y, XU L, FAN J, et al. Influence of substrate temperature on properties of ZnSe thin films deposited by electron-beam evaporation[J]. Acta Photonica Sinica, 2021, 50(6): 0631001. (in Chinese). [13] 马秋静, 段微波, 于天燕, 等. 组分掺杂对YbF3薄膜材料光学和理化特性的影响及其在红外光学薄膜元件制备中的应用[J]. 红外与毫米波学报, 2025, 44(1): 86-96.MA Q J, DUAN W B, YU T Y, et al. The effect of doping on the optical and physicochemical properties of YbF3 and its application in infrared coatings[J]. Journal of Infrared and Millimeter Waves, 2025, 44(1): 86-96. (in Chinese). [14] 付秀华, 刘瑞奇, 朱忠尧, 等. 大角度双波段探测成像分光器件的研制[J]. 中国激光, 2023, 50(14): 1403101. doi: 10.3788/CJL221490FU X H, LIU R Q, ZHU ZH Y, et al. Fabrication of large-angle dual-band detection imaging splitter[J]. Chinese Journal of Lasers, 2023, 50(14): 1403101. (in Chinese). doi: 10.3788/CJL221490 [15] 师云云, 徐均琪, 刘政, 等. 多波段大口径全介质高反膜的设计与制备[J]. 表面技术, 2022, 51(4): 335-341.SHI Y Y, XU J Q, LIU ZH, et al. Design and preparation of large aperture high reflective films composed entirely of dielectric materials for multi-band application[J]. Surface Technology, 2022, 51(4): 335-341. (in Chinese). [16] 付秀华, 任开发, 王奔, 等. 用于地表温度探测10μm~11μm带通滤波器的研制[J]. 应用光学, 2024, 45(6): 1138-1146. doi: 10.5768/JAO202445.0601005FU X H, REN K F, WANG B, et al. Development of 10 μm~11 μm bandpass filter for surface temperature detection[J]. Journal of Applied Optics, 2024, 45(6): 1138-1146. (in Chinese). doi: 10.5768/JAO202445.0601005 [17] 肖定全, 朱建国, 朱基亮, 等. 薄膜物理与器件[M]. 北京: 国防工业出版社, 2011: 196-198.XIAO D Q, ZHU J G, ZHU J L, et al. Thin Film Physics and Devices[M]. Beijing: National Defense Industry Press, 2011: 196-198. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认). [18] FU X H, FU G Y, DONG S T, et al. Development of low-stress double-pass filter device for methane and ethane flammable gas detection system[J]. Applied Sciences, 2024, 14(21): 9902. doi: 10.3390/app14219902 -