留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小F数光学系统宽温域无热化设计

陈硕 潘宇 李泓洋 张砚冬 李博 李寒霜 顾国超 范纪泽 张旭

陈硕, 潘宇, 李泓洋, 张砚冬, 李博, 李寒霜, 顾国超, 范纪泽, 张旭. 小F数光学系统宽温域无热化设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0102
引用本文: 陈硕, 潘宇, 李泓洋, 张砚冬, 李博, 李寒霜, 顾国超, 范纪泽, 张旭. 小F数光学系统宽温域无热化设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0102
CHEN Shuo, PAN Yu, LI Hong-yang, ZHANG Yan-dong, LI Bo, LI Han-shuang, GU Guo-chao, FAN Ji-ze, ZHANG Xu. Wide temperature range athermal design of low F-Number optical systems[J]. Chinese Optics. doi: 10.37188/CO.2025-0102
Citation: CHEN Shuo, PAN Yu, LI Hong-yang, ZHANG Yan-dong, LI Bo, LI Han-shuang, GU Guo-chao, FAN Ji-ze, ZHANG Xu. Wide temperature range athermal design of low F-Number optical systems[J]. Chinese Optics. doi: 10.37188/CO.2025-0102

小F数光学系统宽温域无热化设计

cstr: 32171.14.CO.2025-0102
基金项目: 科技部重点研发计划(No. 2022YFB3903202)
详细信息
    作者简介:

    陈 硕(2001—),女,黑龙江七台河人,硕士,2023年于东北石油大学获得学士学位,主要从事光学设计方面的研究。E-mail:2084199287@qq.com

  • 中图分类号: TP394.1;TH691.9

Wide temperature range athermal design of low F-Number optical systems

Funds: Supported by the National Key Research and Development Program of China (No. 2022YFB3903202).
More Information
  • 摘要:

    在宽温域应用场景中,传统光学系统往往难以维持稳定的成像质量,其主要原因在于常规无热化设计方法未能充分考虑玻璃材料在高温与低温下线胀系数与折射率温度系数的差异。针对这一问题,本文提出了一种面向宽温域的无热化设计方法,通过重建热像差建模过程,准确表征热像差随温度变化的非线性响应,进而筛选出在宽温域内综合热光焦度最小的玻璃材料组合,并结合镜筒材料热膨胀特性,有效抑制系统焦点漂移。设计验证中,构建了一套焦距为100 mm、F 数为2.2、视场角为 7°的光学系统。结果表明,在−30 °C至270 °C的温度范围内,该系统始终保持优异的成像性能:在全视场和全温度条件下,MTF(@56 lp/mm)均大于 0.5,弥散斑直径小于9 μm,且90%以上的能量聚焦在直径18 μm的包围圆内。上述结果充分验证了所提方法的有效性,为宽温域光学系统的无热化设计提供了有力支撑。同时,该方法具备良好的工程适应性,在复杂环境下的成像系统设计中展现出广阔的应用前景。

     

  • 图 1  折射率温度系数(dn/dT)变化趋势

    Figure 1.  Trend of refractive index temperature coefficient (dn/dT)

    图 2  热光系数随温度变化趋势

    Figure 2.  Trend of thermo-optic coefficient with temperature

    图 3  温度变化时焦点偏移示意图

    Figure 3.  Schematic of focal shift under temperature variation

    图 4  镜筒材料随温度变化示意图

    Figure 4.  Schematic of housing material behavior under temperature variation

    图 5  光学系统初始结构2D图

    Figure 5.  Initial 2D layout of the optical system

    图 6  优化后光学系统2D图

    Figure 6.  Optimized 2D layout of the optical system

    图 7  优化后光学系统MTF图

    Figure 7.  Optimized MTF of the optical system

    图 8  优化后光学系统点列图((a) −30 °C;(b) 20 °C;(c) 90 °C;(d) 150 °C;(e) 210 °C;(f) 270 °C)

    Figure 8.  Optimized spot diagram of the optical system ((a) −30 °C; (b) 20 °C; (c) 90 °C; (d) 150 °C; (e) 210 °C; (f) 270 °C)

    图 9  优化后光学系统圈入能量

    Figure 9.  Optimized encircled energy of the optical system

    表  1  光学系统指标

    Table  1.   Optical system Performance Parameters

    Parameter Performance Indicators
    Spectral Range 550~710 nm
    FOV
    Focal 100 mm
    F number 2.22
    Aperture 45 mm
    Temperature Range −30~270 °C
    下载: 导出CSV

    表  2  光学系统初始结构折射率与阿贝数

    Table  2.   Optical system initial structure refractive index and Abbe number

    ElementRefractive IndexAbbe Number
    11.6693452.37
    21.6514954.88
    31.7493427.82
    41.6587832.91
    51.7439744.85
    61.7439744.85
    下载: 导出CSV

    表  3  备选玻璃材料热光系数

    Table  3.   Thermo-optic coefficient of candidate glass materials

    Lens1H-LAK1H-LAK11H-ZBAF3H-ZBAF50H-LAK70
    γ1.49×10−51.99×10−51.84×10−51.96×10−52.37×10−5
    Lens2H-LAK1H-LAK11H-LAK10H-ZBAF3H-LAK67
    γ1.49×10−51.99×10−51.97×10−51.84×10−52.37×10−5
    Lens3ZF50H-ZF6ZF12ZF51H-ZF50
    γ2.38×10−52.47×10−54.29×10−53.92×10−52.51×10−5
    Lens4H-ZF1H-ZF39H-ZF2H-F51H-ZBAF4
    γ1.64×10−51.86×10−51.92×10−62.21×10−54.98×10−5
    Lens5H-LaF3B`H-LAF6LAH-ZF12H-ZBAF20H-LAF53
    γ1.92×10−52.71×10−52.49×10−53.13×10−53.18×10−5
    Lens6H-LaF3B`H-LAF6LAH-ZF12H-ZBAF20H-LAF53
    γ1.92×10−52.71×10−52.49×10−53.13×10−53.18×10−5
    下载: 导出CSV

    表  4  不同镜筒材料线胀系数

    Table  4.   CTE of different housing materials

    Materials CTE (10−6/°C)
    Invar 2.4
    TC4 8.9
    AL 23.6
    Mg 25
    下载: 导出CSV
  • [1] 李文雄, 申军立, 张星祥, 等. 低温红外离轴三反准直系统设计[J]. 光学 精密工程, 2023, 31(9): 1285-1294. doi: 10.37188/OPE.20233109.1285

    LI W X, SHEN J L, ZHANG X X, et al. Design of low temperature infrared off-axis three-mirror collimation system[J]. Optics and Precision Engineering, 2023, 31(9): 1285-1294. (in Chinese). doi: 10.37188/OPE.20233109.1285
    [2] 张运方, 朱飞虎, 郑岩, 等. 小行星地形探测激光雷达接收光学系统设计[J]. 光学 精密工程, 2025, 33(4): 521-531. doi: 10.37188/OPE.20253304.0521

    ZHANG Y F, ZHU F H, ZHENG Y, et al. Design of receiving optical system for asteroid terrain detection LiDAR[J]. Optics and Precision Engineering, 2025, 33(4): 521-531. (in Chinese). doi: 10.37188/OPE.20253304.0521
    [3] LIU Y, LI J H, ZHANG P F, et al. Design method for a small F-number two-material uniform dispersion immersion grating imaging spectrometer[J]. Optics Express, 2023, 31(21): 35054-35067. doi: 10.1364/OE.502867
    [4] ZHANG L, LI B, LI H SH, et al. Method for designing a grid-slit spectrometer with low spectral-line bending[J]. Optics and Lasers in Engineering, 2024, 183: 108514. doi: 10.1016/j.optlaseng.2024.108514
    [5] LIN J, ZHAO L J, WANG J H. Numerical investigation on aero-thermodynamic characteristics of wedge shaped nose cone of near space supersonic flight[J]. Applied Mechanics and Materials, 2014, 541-542: 608-612.
    [6] MANGANO M, MARTINS J R R A. Multipoint aerodynamic shape optimization for subsonic and supersonic regimes[J]. Journal of Aircraft, 2021, 58(3): 650-662. doi: 10.2514/1.C036216
    [7] LIU T, WANG CH, YU Y, et al. Passive athermal optical design method considering thermal-induced surface deformation[J]. Photonics, 2021, 8(9): 396. doi: 10.3390/photonics8090396
    [8] SHEN B L, CHANG J, NIU Y J, et al. Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems[J]. Optics and Lasers in Engineering, 2018, 106: 1-9.
    [9] TAMAGAWA Y, TAJIME T. Expansion of an athermal chart into a multilens system with thick lenses spaced apart[J]. Optical Engineering, 1996, 35(10): 3001-3006. doi: 10.1117/1.600984
    [10] MA Y J, YANG H T, CHEN W N, et al. Athermal and apochromatic design of equivalent two-component optical system in 3D glass diagram[J]. Photonics, 2024, 11(8): 719. doi: 10.3390/photonics11080719
    [11] LIM T Y, KIM Y S, PARK S C. Achromatic and athermal design of an optical system with corrected petzval curvature on a three-dimensional glass chart[J]. Current Optics and Photonics, 2017, 1(4): 378-388.
    [12] AHN B I, KIM Y S, PARK S C. Athermal and achromatic design for a night vision camera using tolerable housing boundary on an expanded athermal glass map[J]. Current Optics and Photonics, 2017, 1(2): 125-131. doi: 10.3807/COPP.2017.1.2.125
    [13] KUCUKCELEBI D, AYDEMIR S E. Passive athermalization of MWIR optical designs utilizing different infrared optical materials[J]. Proceedings of SPIE, 2022, 12217: 1221705.
    [14] LI J, DING Y L, LIU X J, et al. Achromatic and athermal design of aerial catadioptric optical systems by efficient optimization of materials[J]. Sensors, 2023, 23(4): 1754. doi: 10.3390/s23041754
    [15] 马志远, 王鹏飞, 吴志强, 等. 基于1stOpt求解光学玻璃折射率温度系数经验公式常量的方法[J]. 光子学报, 2017, 46(6): 0616002. doi: 10.3788/gzxb20174606.0616002

    MA ZH Y, WANG P F, WU ZH Q, et al. A method for solving the refractive index temperature coefficient empirical formula constants of optical glasses based on 1stOpt[J]. Acta Photonica Sinica, 2017, 46(6): 0616002. (in Chinese). doi: 10.3788/gzxb20174606.0616002
    [16] 唐晗, 夏丽昆, 刘炼, 等. 大变倍比制冷型长波红外变焦光学系统设计[J]. 中国光学(中英文), 2024, 17(1): 69-78. doi: 10.37188/CO.2023-0052

    TANG H, XIA L K, LIU L, et al. Design of cooled long-wave infrared optical system with large zooming range[J]. Chinese Optics, 2024, 17(1): 69-78. (in Chinese). doi: 10.37188/CO.2023-0052
    [17] 张丽芝, 陆秋萍, 段帆琳, 等. 长焦镜头光学系统设计及无热化研究[J]. 光学学报, 2024, 44(8): 0822004. doi: 10.3788/AOS231926

    ZHANG L ZH, LU Q P, DUAN F L, et al. Optical system design and athermalization of telephoto lens[J]. Acta Optica Sinica, 2024, 44(8): 0822004. (in Chinese). doi: 10.3788/AOS231926
    [18] MONROE J A, FEHLBERG O, ZAVISLAN J M. Athermalizing mounted doublets with ALLVAR alloys[J]. Proceedings of SPIE, 2024, 13131: 131310A.
    [19] JIANG CH, LIU M Q. Athermalization of a lens system by glass selection using simulated annealing with memory augmentation[J]. Optics Express, 2024, 32(8): 14860-14875. doi: 10.1364/OE.521560
    [20] ZHANG L, LI J H, LI H SH, et al. A high resolution prism-grating panoramic imaging spectrometer based on occultation observations[J]. Optics Communications, 2024, 560: 130436. doi: 10.1016/j.optcom.2024.130436
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-10-13

目录

    /

    返回文章
    返回