留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成像式光体积描记术信号去噪

李文通 张起起 刘隆鑫 马真龙 孙运杰 嵇晓强

李文通, 张起起, 刘隆鑫, 马真龙, 孙运杰, 嵇晓强. 成像式光体积描记术信号去噪[J]. 中国光学(中英文), 2026, 19(1): 96-108. doi: 10.37188/CO.2025-0103
引用本文: 李文通, 张起起, 刘隆鑫, 马真龙, 孙运杰, 嵇晓强. 成像式光体积描记术信号去噪[J]. 中国光学(中英文), 2026, 19(1): 96-108. doi: 10.37188/CO.2025-0103
LI Wen-tong, ZHANG Qi-qi, LIU Long-xin, MA Zhen-long, SUN Yun-jie, JI Xiao-qiang. Denoising of imaging photoplethysmography signals[J]. Chinese Optics, 2026, 19(1): 96-108. doi: 10.37188/CO.2025-0103
Citation: LI Wen-tong, ZHANG Qi-qi, LIU Long-xin, MA Zhen-long, SUN Yun-jie, JI Xiao-qiang. Denoising of imaging photoplethysmography signals[J]. Chinese Optics, 2026, 19(1): 96-108. doi: 10.37188/CO.2025-0103

成像式光体积描记术信号去噪

cstr: 32171.14.CO.2025-0103
基金项目: 吉林省科技发展计划项目(No. 20240101339JC)
详细信息
    作者简介:

    嵇晓强(1982—),女,吉林德惠人,博士,教授,研究生导师,2012年于中国科学院长春光学精密机械与物理研究所获得光学工程博士学位,主要从事医学信号及图像处理方面的研究。E-mail:zuoanmulan@163.com

  • 中图分类号: TP394.1;TH691.9

Denoising of imaging photoplethysmography signals

Funds: Supported by Science and Technology Development Plan Project of Jilin Province (No. 20240101339JC)
More Information
  • 摘要:

    针对成像式光体积描记术(Image Photoplethysmography, IPPG)信号采集过程中易受到噪声干扰的问题,本文提出了一种针对IPPG噪声分布特性的去噪扩散概率模型(Denoising Diffusion Probability Model for IPPG, DDPM-IPPG),通过扩散和逆扩散阶段消除基线漂移与噪声,提升信号的信噪比和后续心率指标的准确性。首先,在扩散阶段对光体积描记术(Photoplethysmography, PPG)信号逐步添加高斯噪声,构建噪声序列,训练基于非线性交融模块和桥接模块的噪声预测器。其次,在逆扩散阶段利用训练完善的噪声预测器对初步提取的IPPG信号进行逐步去噪,恢复出形态相似于PPG的IPPG信号。最后,将本文提出的模型与当前主流模型在PURE、UBFC-IPPG、UBFC-Phys和MMPD数据集上进行验证和对比分析。实验结果表明:与现有最高精度提取方法相比,DDPM-IPPG在PURE数据集上,信噪比提升1.06 dB,心率的平均绝对误差下降0.24 bpm,均方根误差下降0.41 bpm;在UBFC-IPPG数据集上信噪比提升1.50 dB。本文提出的DDPM-IPPG模型在IPPG信号消除基线漂移与噪声方面达到了先进水平,能够更精确地逼近真实信号,为生理健康评估与远程医疗监测提供了更加可靠的数据基础。

     

  • 图 1  基于镜面反射和漫反射的皮肤反射模型

    Figure 1.  The skin refection model containing specular and diffuse reflections

    图 2  IPPG信号提取框架:初步提取与基于DDPM-IPPG去噪

    Figure 2.  IPPG signal extraction framework: preliminary extraction and denoising based on DDPM-IPPG

    图 3  IPPG信号初步提取方法。(a) IPPG信号提取流程图;(b) IPPG的图像处理模块;(c) RGB图;(d) 原始IPPG波形图;(e) 滤波后的IPPG波形图;(f) 截取部分帧的IPPG信号与PPG信号(黄色部分)对比

    Figure 3.  Preliminary extraction method for IPPG signals. (a) IPPG signal extraction flowchart; (b) IPPG image processing module; (c) RGB image; (d) original IPPG waveform diagram; (e) filtered IPPG waveform diagram; (f) comparison of IPPG signals and PPG signals (yellow portion) from a portion of a frame

    图 4  (a) DDPM-IPPG框架;(b) 噪声预测器结构图;(c) 非线性交融模块;(d) 桥接模块

    Figure 4.  (a) DDPM-IPPG framework; (b) structure diagram of noise predictor; (c) nonlinear fusion module; (d) bridging module

    图 5  四种数据集上初始IPPG、去噪IPPG波形和PPG波形可视化对比结果

    Figure 5.  Visualization comparison results of initial IPPG, denoising IPPG waveforms, and PPG waveforms on four datasets

    图 6  四种数据集上心率指标估计的散点图和Bland-Altman图

    Figure 6.  Scatter plots and Bland-Altman plots of heart rate estimates on four datasets

    表  1  IPPG数据集

    Table  1.   IPPG dataset

    数据集名称 受试者
    数量
    视频
    数量
    视频
    时长
    帧率 分辨率 PPG
    采样率
    采集设备与方式 采集场景/条件描述
    PURE 10人 60 1 min 30 Hz 640×480 60 Hz Eco274CVGE 相机
    CMS50E 脉搏血氧仪
    稳定、交谈、慢速平移、快速平移、
    小范围旋转、中度旋转共6种条件
    UBFC-rPPG 42人 46 1 min 30 Hz 640×480 60 Hz LogitechC920相机
    CMS50E血氧仪
    室内自然光,通过数字游戏诱导心率变化
    UBFC-Phys 56人 168 3 min 35 Hz 1024×1024 64 Hz E0-23121CRGB相机
    EmpaticaE4腕带
    室内自然光,压力诱导情境
    MMPD 33人 660 1 min 30 Hz 320×240 30 Hz SamsungGalaxyS22手机
    HKG-07C血氧仪
    4种照明(自然光、白炽灯、低LED、高LED)
    和4种活动(静止、转头、说话、行走)
    下载: 导出CSV

    表  2  IPPG提取方法在PURE数据集性能对比

    Table  2.   Comparison of IPPG extraction methods on PURE dataset

    方法 评估指标
    SNR HR AVNN SDNN
    (dB)↑ MAE(bpm)↓ RMSE(bpm)↓ r MAE(ms)↓ RMSE(ms)↓ MAE(ms)↓ RMSE(ms)↓
    CHROM[18] 5.35 4.85 16.27 0.72 40.19 42.18
    POS[19] 2.45 3.88 0.85 10.83 16.42 21.56 30.86
    ESA-rPPGNet[26] 8.92 11.75
    PhysFormer[23] 6.31 4.36 13.00 0.76 24.83 29.11
    DiffPhys[30] 10.07 1.46 5.88 0.90 13.75 21.10
    PulseGan[29] 6.69 2.01 6.87 0.87 24.04 45.63
    DeepPhys[20] 6.32 3.96 12.95 0.76 25.55 41.20
    rPPG-MAE[27] 0.40 0.92 0.99
    SiNC[28] 0.61 1.84 1.00
    STFPNet[31] 0.47 0.69 0.99
    RhythmFormer[25] 0.27 0.47 0.99
    Ours 11.13 0.03 0.06 0.99 8.90 9.66 42.67 49.66
    下载: 导出CSV

    表  3  IPPG提取方法在UBFC-rPPG数据集性能对比

    Table  3.   Comparison of IPPG extraction methods on UBFC-rPPG dataset

    方法 评估指标
    SNR HR AVNN SDNN
    (dB)↑ MAE(bpm)↓ RMSE(bpm)↓ r MAE(ms)↓ RMSE(ms)↓ MAE(ms)↓ RMSE(ms)↓
    POS[19] 2.47 3.88 0.84 12.76 18.28 21.76 31.40
    CHROM[18] 4.92 3.19 9.98 0.90 29.11 24.21
    ESA-rPPGNet[26] 5.14 13.76
    PhysFormer[23] 6.01 2.83 6.43 0.99 7.11 13.49
    DiffPhys[30] 7.98 1.05 1.63 0.99 7.11 13.49
    PulseGan[29] 7.90 1.19 2.10 0.97 7.52 18.36
    rPPG-MAE[27] 0.17 0.21 0.99
    STFPNet[31] 0.41 0.95 0.99
    RhythmFormer[25] 0.50 0.78 0.99
    Ours 9.48 0.50 0.74 0.99 7.46 10.64 21.71 30.90
    下载: 导出CSV

    表  4  IPPG提取方法在UBFC-Phys和MMPD数据集性能对比

    Table  4.   Comparison of IPPG extraction methods on UBFC-Phys and MMPD datasets

    方法 评估指标
    HR(UBFC-Phys) HR(MMPD)
    MAE(bpm)↓ RMSE(bpm)↓ r MAE(bpm)↓ RMSE(bpm)↓ r
    GREEN[40] 13.55 18.80 0.29 21.68 27.69 −0.01
    ICA[17] 10.04 15.73 0.36 18.60 24.30 0.01
    CHROM[18] 4.49 7.56 0.80 13.66 18.76 0.08
    LGI[41] 6.27 10.41 0.70 17.08 23.32 0.04
    PBV[42] 12.34 17.43 0.33 17.95 23.58 0.09
    POS[19] 4.51 8.16 0.77 12.36 17.71 0.18
    DeepPhys[20] 22.27 28.92 −0.03
    PhysNet[24] 4.80 11.80 0.60
    TS-CAN[21] 9.71 17.22 0.44
    PhysFomer[23] 11.99 18.41 0.18
    EfficientPhys[22] 13.47 21.32 0.21
    RhythmFormer[25] 3.07 6.81 0.86
    Ours 1.40 3.51 0.89 5.99 10.39 0.63
    下载: 导出CSV
  • [1] ZHANG X B, XIA ZH Q, DAI J, et al. MSDN: a multistage deep network for heart-rate estimation from facial videos[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5032415.
    [2] TAO X, SU L W, RAO ZH, et al. Facial video-based non-contact emotion recognition: a multi-view features expression and fusion method[J]. Biomedical Signal Processing and Control, 2024, 96: 106608. doi: 10.1016/j.bspc.2024.106608
    [3] 黄凯, 王峰, 王晔, 等. 基于颜色和光流的多注意力机制微表情识别[J]. 液晶与显示, 2024, 39(7): 939-949.

    HUANG Kai, WANG Feng, WANG Ye, et al. Multi-attention micro-expression recognition based on color and optical flow[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(7): 939-949. (in Chinese).
    [4] GUARDUCCI S, JAYOUSI S, CAPUTO S, et al. Key fundamentals and examples of sensors for human health: wearable, non-continuous, and non-contact monitoring devices[J]. Sensors, 2025, 25(2): 556. doi: 10.3390/s25020556
    [5] LEE R J, SIVAKUMAR S, LIM K H. Review on remote heart rate measurements using photoplethysmography[J]. Multimedia Tools and Applications, 2024, 83(15): 44699-44728.
    [6] PEREPELKINA O, ARTEMYEV M, CHURIKOVA M, et al. HeartTrack: convolutional neural network for remote video-based heart rate monitoring[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2020: 1163-1171.
    [7] YU Z T, PENG W, LI X B, et al. Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, 2019: 151-160.
    [8] CASADO C Á, LÓPEZ M B. Face2PPG: an unsupervised pipeline for blood volume pulse extraction from faces[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(11): 5530-5541. doi: 10.1109/JBHI.2023.3307942
    [9] ALNAGGAR M, SIAM A I, HANDOSA M, et al. Video-based real-time monitoring for heart rate and respiration rate[J]. Expert Systems with Applications, 2023, 225: 120135. doi: 10.1016/j.eswa.2023.120135
    [10] ZOU B CH, GUO Z ZH, HU X CH, et al. RhythmMamba: fast, lightweight, and accurate remote physiological measurement[C]. Proceedings of the 39th AAAI Conference on Artificial Intelligence, AAAI Press, 2025: 11077-11085.
    [11] WU B W, JIANG T, YU ZH X, et al. Proximity sensing electronic skin: principles, characteristics, and applications[J]. Advanced Science, 2024, 11(13): 2308560. doi: 10.1002/advs.202308560
    [12] 饶治, 李炳霖, 隋雅茹, 等. 成像式光体积描记术精神压力检测[J]. 中国光学(中英文), 2022, 15(6): 1350-1359.

    RAO ZH, LI B L, SUI Y R, et al. Image photoplethysmography for mental stress detection[J]. Chinese Optics, 2022, 15(6): 1350-1359. (in Chinese).
    [13] 嵇晓强, 刘振瑶, 李炳霖, 等. 面部视频非接触式生理参数感知[J]. 中国光学, 2022, 15(2): 276-285. doi: 10.37188/CO.2021-0157

    JI X Q, LIU ZH Y, LI B L, et al. Non-contact perception of physiological parameters from videos of faces[J]. Chinese Optics, 2022, 15(2): 276-285. (in Chinese). doi: 10.37188/CO.2021-0157
    [14] CASADO C Á, CAÑELLAS M L, LÓPEZ M B. Depression recognition using remote photoplethysmography from facial videos[J]. IEEE Transactions on Affective Computing, 2023, 14(4): 3305-3316. doi: 10.1109/TAFFC.2023.3238641
    [15] ANIL A A, KARTHIK S, SIVAPRAKASAM M, et al. Dynamic ROI adaptation for accurate non-contact heart rate estimation using VGG-13 based encoder-decoder model and facial landmarks[C]. ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2025: 1-5.
    [16] POH M Z, MCDUFF D J, PICARD R W. Advancements in noncontact, multiparameter physiological measurements using a webcam[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(1): 7-11. doi: 10.1109/TBME.2010.2086456
    [17] DE HAAN G, JEANNE V. Robust pulse rate from chrominance-based rPPG[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2878-2886. doi: 10.1109/TBME.2013.2266196
    [18] WANG W J, DEN BRINKER A C, STUIJK S, et al. Algorithmic principles of remote PPG[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(7): 1479-1491. doi: 10.1109/TBME.2016.2609282
    [19] 陈森路, 刘育梁, 徐团伟. 基于自适应感兴趣区域的视频心率测量[J]. 光学精密工程, 2021, 29(7): 1740-1749.

    CHEN Sen-lu, LIU Yu-liang, XU Tuan-wei. Video heart rate measurements based on adaptive region of interest[J]. Optics and Precision Engineering, 2021, 29(7): 1740-1749. (in Chinese).
    [20] CHEN W X, MCDUFF D. DeepPhys: video-based physiological measurement using convolutional attention networks[C]. Proceedings of the 15th European Conference on Computer Vision - ECCV 2018, Springer, 2018: 356-373.
    [21] LIU X, FROMM J, PATEL S, et al. Multi-task temporal shift attention networks for on-device contactless vitals measurement[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2020: 1627.
    [22] LIU X, HILL B, JIANG Z H, et al. EfficientPhys: enabling simple, fast and accurate camera-based cardiac measurement[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), IEEE, 2023: 4997-5006.
    [23] YU Z T, SHEN Y M, SHI J G, et al. PhysFormer: facial video-based physiological measurement with temporal difference transformer[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2022: 4176-4186.
    [24] YU Z T, LI X B, ZHAO G Y. Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[C]. Proceedings of the 30th British Machine Vision Conference 2019, BWVA Press, 2019: 277.
    [25] ZOU B CH, GUO Z ZH, CHEN J SH, et al. RhythmFormer: extracting patterned rPPG signals based on periodic sparse attention[J]. Pattern Recognition, 2025, 164: 111511. doi: 10.1016/j.patcog.2025.111511
    [26] KUANG H L, LV F B, MA X L, et al. Efficient spatiotemporal attention network for remote heart rate variability analysis[J]. Sensors, 2022, 22(3): 1010. doi: 10.3390/s22031010
    [27] LIU X, ZHANG Y T, YU Z T, et al. rPPG-MAE: self-supervised pretraining with masked autoencoders for remote physiological measurements[J]. IEEE Transactions on Multimedia, 2024, 26: 7278-7293. doi: 10.1109/TMM.2024.3363660
    [28] SPETH J, VANCE N, FLYNN P, et al. Non-contrastive unsupervised learning of physiological signals from video[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2023: 14464-14474.
    [29] SONG R CH, CHEN H, CHENG J, et al. PulseGAN: learning to generate realistic pulse waveforms in remote photoplethysmography[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1373-1384. doi: 10.1109/JBHI.2021.3051176
    [30] CHEN SH T, WONG K L, CHIN J W, et al. DiffPhys: enhancing signal-to-noise ratio in remote photoplethysmography signal using a diffusion model approach[J]. Bioengineering, 2024, 11(8): 743. doi: 10.3390/bioengineering11080743
    [31] LI ZH P, XIAO H G, XIA Z Y, et al. STFPNet: a simple temporal feature pyramid network for remote heart rate measurement[J]. Measurement, 2025, 252: 117287. doi: 10.1016/j.measurement.2025.117287
    [32] HUANG B, HU SH, LIU Z M, et al. Challenges and prospects of visual contactless physiological monitoring in clinical study[J]. npj Digital Medicine, 2023, 6(1): 231. doi: 10.1038/s41746-023-00973-x
    [33] LUGARESI C, TANG J Q, NASH H, et al. MediaPipe: a framework for building perception pipelines[J]. arXiv:, 1906, 08172: 2019.
    [34] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2020: 574.
    [35] SOHL-DICKSTEIN J, WEISS E A, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]. Proceedings of the 32nd International Conference on Machine Learning, JMLR. org, 2015: 2256-2265.
    [36] STRICKER R, MÜLLER S, GROSS H M. Non-contact video-based pulse rate measurement on a mobile service robot[C]. Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, IEEE, 2014: 1056-1062.
    [37] BOBBIA S, MACWAN R, BENEZETH Y, et al. Unsupervised skin tissue segmentation for remote photoplethysmography[J]. Pattern Recognition Letters, 2019, 124: 82-90. doi: 10.1016/j.patrec.2017.10.017
    [38] TANG J K, CHEN K Q, WANG Y T, et al. MMPD: multi-domain mobile video physiology dataset[C]. 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2023: 1-5.
    [39] SABOUR R M, BENEZETH Y, DE OLIVEIRA P, et al. UBFC-Phys: a multimodal database for psychophysiological studies of social stress[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 622-636. doi: 10.1109/TAFFC.2021.3056960
    [40] VERKRUYSSE W, SVAASAND L O, NELSON J S. Remote plethysmographic imaging using ambient light[J]. Optics Express, 2008, 16(26): 21434-21445. doi: 10.1364/OE.16.021434
    [41] PILZ C S, ZAUNSEDER S, KRAJEWSKI J, et al. Local group invariance for heart rate estimation from face videos in the wild[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2018: 1254-1262.
    [42] DE HAAN G, VAN LEEST A. Improved motion robustness of remote-PPG by using the blood volume pulse signature[J]. Physiological Measurement, 2014, 35(9): 1913-1926. doi: 10.1088/0967-3334/35/9/1913
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  97
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-04
  • 修回日期:  2025-09-09
  • 网络出版日期:  2025-10-13

目录

    /

    返回文章
    返回