Research on spatial resolution of a single light field camera based on forward ray tracing technique
-
摘要:
目的: 由于光场相机将空间与角度信息联合采样,光场相机的空间分辨率随三维位置的变化而改变,因此表现出三维性、复杂性以及显著的非均匀特性。在三维场景的重建过程中,光场相机的空间分辨率会影响可恢复的空间细节和深度分辨率,从而影响三维重建的准确性。因此,对光场相机的空间分辨率进行计算与分析,对于高分辨率和低分辨率区域的识别十分重要。方法: 本文利用前向光线追迹技术的高精度的优点,研究了一种基于前向光线追迹技术的光场相机空间分辨率计算方法。对不同微透镜阵列排列方式下的光场相机1.0和2.0的空间分辨率进行了定量计算和比较。进一步研究了不同的主镜头逆放大率(M l )对光场相机深度分辨率的影响。结果: 结果表明,光场相机在物平面与光轴交点附近以外的区域具有较高的深度分辨率。结论: 光场相机2.0在(0,0,0)附近区域的深度分辨率优于光场相机1.0。对于正方形排列的微透镜阵列,光场相机2.0的横向分辨率较光场相机1.0略有提升。光场相机1.0的深度分辨率随着M l 的增大而逐渐降低。Abstract:Objetive: Since the light field camera (LFC) simultaneously samples spatial and angular information, its spatial resolution varies with the three-dimensional (3D) position, thereby exhibiting three-dimensionality, complexity, and pronounced non-uniformity. In the process of 3D scene reconstruction, the spatial resolution of the LFC affects the recoverable spatial details as well as the depth resolution, thereby influencing the accuracy of the 3D reconstruction. Therefore, calculating and analyzing the spatial resolution of the LFC is crucial for identifying the high and low resolution regions.Method: In this paper, a calculation method for the spatial resolution of an LFC is explored based on the forward ray-tracing technique, which has the advantage of high accuracy. The spatial resolutions of LFC 1.0 and LFC 2.0 under different microlens array configurations are quantitatively calculated and compared. In addition, the effects of the inverse magnification (M l ) of the main lens on the depth resolution of the LFC are investigated.Result: The results show that the LFC exhibits higher depth resolution in regions away from the intersection of the object plane and the optical axis.Conclusion: The depth resolution of LFC 2.0 near the region of (0,0,0) is better than that of LFC 1.0. For a microlens array arranged in a square pattern, the lateral resolution of LFC 2.0 shows a slight improvement over that of LFC 1.0. The depth resolution of the LFC 1.0 gradually decreases asM l increases.-
Key words:
- light field camera /
- spatial resolution /
- reconstruction /
- ray tracing /
- depth resolution
-
表 1 光场相机1.0的光学参数
Table 1. Parameters of the light field camera 1.0
d1
(mm)d2
(mm)fm
(mm)f
(mm)l1
(mm)lm
(mm)Pm
(mm)Px
(μm)0.6 - 0.6 100 200 200 0.1045 5.5 表 2 光场相机2.0的光学参数
Table 2. Parameters of the light field camera 2.0
d1
(mm)d2
(mm)fm
(mm)f
(mm)l1
(mm)l2
(mm)Pm
(mm)Px
(μm)0.54 5.4 0.6 100 200 200 0.1045 5.5 表 3 不同Ml下光场相机1.0的光学参数
Table 3. Parameters of the light field camera 1.0 with different Ml
d1 (mm) fm (mm) f (mm) Ml l1 (mm) lm (mm) Pm (mm) Px (μm) 0.6 0.6 100 1 200 200 0.1045 5.5 0.6 0.6 100 1.5 250 166.667 0.1045 5.5 0.6 0.6 100 2 300 150 0.1045 5.5 0.6 0.6 100 2.5 350 140 0.1045 5.5 -
[1] ZHU X Y, WU ZH A, LI J, et al. A pre-recognition SART algorithm for the volumetric reconstruction of the light field PIV[J]. Optics and Lasers in Engineering, 2021, 143: 106625. doi: 10.1016/j.optlaseng.2021.106625 [2] LYNCH K, FAHRINGER T, THUROW B. Three-dimensional particle image velocimetry using a plenoptic camera[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, 2012: AIAA 2012-1056. [3] SHI SH X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006 [4] SHI SH X, DING J F, NEW T H, et al. Volumetric calibration enhancements for single-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(1): 21. doi: 10.1007/s00348-018-2670-5 [5] SHI SH X, DING J F, NEW T H. Dense ray tracing based reconstruction algorithm for light field PIV and comparative study with Tomo-PIV[C]//18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, 2016. (查阅网上资料, 未找到本条文献出版者信息, 请确认). [6] SHI SH X, DING J F, NEW T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7): 78. doi: 10.1007/s00348-017-2365-3 [7] SHI SH X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. (查阅网上资料, 本条文献与第3条文献重复, 请核对). [8] SHI SH X, DING J F, ATKINSON C, et al. A detailed comparison of single-camera light-field PIV and tomographic PIV[J]. Experiments in Fluids, 2018, 59(3): 46. doi: 10.1007/s00348-018-2500-9 [9] MEI D, DING J F, SHI SH X, et al. High resolution volumetric dual-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(8): 132. doi: 10.1007/s00348-019-2781-7 [10] ZHU X Y, HOSSAIN M M, LI J, et al. Weight coefficient calculation through equivalent ray tracing method for light field particle image velocimetry[J]. Measurement, 2022, 193: 110982. doi: 10.1016/j.measurement.2022.110982 [11] CAO L X, ZHANG B, LI J, et al. Characteristics of tomographic reconstruction of light-field Tomo-PIV[J]. Optics Communications, 2019, 442: 132-147. doi: 10.1016/j.optcom.2019.03.026 [12] ZHU X Y, ZHANG B, LI J, et al. Volumetric resolution of light field imaging and its effect on the reconstruction of light field PIV[J]. Optics Communications, 2020, 462: 125263. doi: 10.1016/j.optcom.2020.125263 [13] ZHU X Y, WU ZH A, LI J, et al. A pre-recognition SART algorithm for the volumetric reconstruction of the light field PIV[J]. Optics and Lasers in Engineering, 2021, 143: 106625. (查阅网上资料, 本条文献与第1条文献重复, 请核对). [14] ZHU X Y, XU CH L, HOSSAIN M M, et al. Approach to select optimal cross-correlation parameters for light field particle image velocimetry[J]. Physics of Fluids, 2022, 34(7): 073601. doi: 10.1063/5.0098933 [15] CAO L X, ZHANG B, HOSSAIN M M, et al. Tomographic reconstruction of light field PIV based on a backward ray-tracing technique[J]. Measurement Science and Technology, 2021, 32(4): 044007. doi: 10.1088/1361-6501/abd281 [16] ZHU X Y, XU CH L, HOSSAIN M M, et al. Fast and accurate flow measurement through dual-camera light field particle image velocimetry and ordered-subset algorithm[J]. Physics of Fluids, 2023, 35(6): 063603. doi: 10.1063/5.0153135 [17] FAHRINGER T W, THUROW B S. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV[J]. Measurement Science and Technology, 2016, 27(9): 094005. doi: 10.1088/0957-0233/27/9/094005 [18] SCARANO F. Tomographic PIV: principles and practice[J]. Measurement Science and Technology, 2013, 24(1): 012001. doi: 10.1088/0957-0233/24/1/012001 [19] ZHAO ZH, YAO CH H, SHI SH X, et al. Resolution analysis on light-field particle image velocimetry[J]. Journal of the Optical Society of America A, 2023, 40(4): 729-740. doi: 10.1364/JOSAA.474866 [20] DEEM E A, ZHANG Y, CATTAFESTA L N, et al. On the resolution of plenoptic PIV[J]. Measurement Science and Technology, 2016, 27(8): 084003. doi: 10.1088/0957-0233/27/8/084003 [21] RUAN L Y, CHEN B, LI J ZH, et al. Learning to deblur using light field generated and real defocus images[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2022: 16283-16292. [22] ZHAO ZH, JI Y, HE Y L, et al. Binocular Scheimpflug light-field PIV[J]. Optics Communications, 2025, 574: 131176. doi: 10.1016/j.optcom.2024.131176 [23] LIU Y D, ZHU M J, WANG T X, et al. Spatial resolution of light field sectioning pyrometry for flame temperature measurement[J]. Optics and Lasers in Engineering, 2021, 140: 106545. doi: 10.1016/j.optlaseng.2021.106545 [24] LYU W Q, SHENG H, KE W, et al. Advances in light field spatial super-resolution: a comprehensive literature survey[J]. IEEE Access, 2025, 13: 18470-18497. doi: 10.1109/ACCESS.2025.3532610 -
下载: