留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于前向光线追迹技术的单光场相机空间分辨率研究

田杏 曹丽霞

田杏, 曹丽霞. 基于前向光线追迹技术的单光场相机空间分辨率研究[J]. 中国光学(中英文), 2026, 19(1): 69-84. doi: 10.37188/CO.2025-0119
引用本文: 田杏, 曹丽霞. 基于前向光线追迹技术的单光场相机空间分辨率研究[J]. 中国光学(中英文), 2026, 19(1): 69-84. doi: 10.37188/CO.2025-0119
TIAN Xing, CAO Li-xia. Research on spatial resolution of a single light field camera based on forward ray tracing technique[J]. Chinese Optics, 2026, 19(1): 69-84. doi: 10.37188/CO.2025-0119
Citation: TIAN Xing, CAO Li-xia. Research on spatial resolution of a single light field camera based on forward ray tracing technique[J]. Chinese Optics, 2026, 19(1): 69-84. doi: 10.37188/CO.2025-0119

基于前向光线追迹技术的单光场相机空间分辨率研究

cstr: 32171.14.CO.2025-0119
基金项目: 国家自然科学基金(No. 12302370)
详细信息
    作者简介:

    曹丽霞(1989—),女,浙江磐安人,博士,讲师,研究生导师,2022年于东南大学获得博士学位。现为中国计量大学计量测试与仪器学院讲师。主要从事光场成像、层析成像和流体可视化方面的研究。E-mail:caolx2019@gmail.com

  • 中图分类号: O438.1

Research on spatial resolution of a single light field camera based on forward ray tracing technique

Funds: Supported by National Natural Science Foundtion of China (No. 12302370)
More Information
  • 摘要:

    在三维场景重建过程中,光场相机的空间分辨率会影响可恢复的空间细节和深度分辨率,从而影响三维重建的准确性。因此,对光场相机的空间分辨率进行计算与分析,对于高分辨率和低分辨率区域的识别十分重要。本文利用前向光线追迹技术的高精度优点,研究了一种基于前向光线追迹技术的光场相机空间分辨率计算方法。对不同微透镜阵列排列方式下的光场相机1.0和2.0的空间分辨率进行了定量计算和比较。进一步研究了不同的主镜头逆放大率(Ml)对光场相机深度分辨率的影响。结果表明,光场相机在物平面与光轴交点附近以外的区域具有较高的深度分辨率。光场相机2.0在(0,0,0)附近区域的深度分辨率优于光场相机1.0。对于正方形排列的微透镜阵列,光场相机2.0的横向分辨率较光场相机1.0略有提升。光场相机1.0的深度分辨率随着Ml的增大而逐渐降低。

     

  • 图 1  光场相机的成像原理示意图

    Figure 1.  Schematic diagram of the imaging principle of the light field camera

    图 2  微透镜阵列排列方式示意图

    Figure 2.  Schematic diagram of the arrangement of the MLA

    图 3  点光源的位置示意图

    Figure 3.  Schematic diagram of the position of the point light source

    图 4  正方形微透镜阵列光场相机1.0沿Z轴的深度分辨率

    Figure 4.  Depth resolution along Z axis of light field camera 1.0 with square microlens array

    图 5  正方形微透镜阵列光场相机1.0沿X轴的横向分辨率

    Figure 5.  Lateral resolution along X axis of light field camera 1.0 with square microlens array

    图 6  正方形微透镜阵列光场相机1.0沿Y轴的横向分辨率

    Figure 6.  Lateral resolution along Y axis of light field camera 1.0 with square microlens array

    图 7  前向光线追迹和逆向光线追迹技术的空间分辨率结果对比

    Figure 7.  Comparison of spatial resolution calculation results between forward ray tracing and backward ray tracing techniques

    图 8  蜂窝型微透镜阵列光场相机1.0沿Z轴的深度分辨率

    Figure 8.  Depth resolution along the Z axis of light field camera 1.0 with honeycomb microlens array

    图 9  蜂窝型微透镜阵列光场相机1.0沿X轴的横向分辨率

    Figure 9.  Lateral resolution along the X axis of light field camera 1.0 with honeycomb microlens array

    图 10  蜂窝型微透镜阵列光场相机1.0沿Y轴的横向分辨率

    Figure 10.  Lateral resolution along the Y axis of light field camera 1.0 with honeycomb microlens array

    图 11  正方形微透镜阵列光场相机2.0沿Z轴的深度分辨率

    Figure 11.  Depth resolution along Z axis of light field camera 2.0 with square microlens array

    图 12  正方形微透镜阵列光场相机2.0沿X轴的横向分辨率

    Figure 12.  Lateral resolution along X axis of light field camera 2.0 with square microlens array

    图 13  正方形微透镜阵列光场相机2.0沿Y轴的横向分辨率

    Figure 13.  Lateral resolution along Y axis of light field camera 2.0 with square microlens array

    图 14  蜂窝型微透镜阵列光场相机2.0沿Z轴的深度分辨率

    Figure 14.  Depth resolution along Z axis of light field camera 2.0 with honeycomb microlens array

    图 15  蜂窝型微透镜阵列光场相机2.0沿X轴的横向分辨率

    Figure 15.  Lateral resolution along X axis of light field camera 2.0 with honeycomb microlens array

    图 16  蜂窝型微透镜阵列光场相机2.0沿Y轴的横向分辨率

    Figure 16.  Lateral resolution along Y axis of light field camera 2.0 with honeycomb microlens array

    图 17  不同Ml在(0,0,Z)的深度分辨率

    Figure 17.  Depth resolution of different Ml at (0,0,Z)

    表  1  光场相机1.0的光学参数

    Table  1.   Parameters of the light field camera 1.0

    d1
    (mm)
    d2
    (mm)
    fm
    (mm)
    f
    (mm)
    l1
    (mm)
    lm
    (mm)
    Pm
    (mm)
    Px
    (μm)
    0.6 - 0.6 100 200 200 0.1045 5.5
    下载: 导出CSV

    表  2  光场相机2.0的光学参数

    Table  2.   Parameters of the light field camera 2.0

    d1
    (mm)
    d2
    (mm)
    fm
    (mm)
    f
    (mm)
    l1
    (mm)
    l2
    (mm)
    Pm
    (mm)
    Px
    (μm)
    0.54 5.4 0.6 100 200 200 0.1045 5.5
    下载: 导出CSV

    表  3  不同Ml下光场相机1.0的光学参数

    Table  3.   Parameters of the light field camera 1.0 with different Ml

    d1 (mm) fm (mm) f (mm) Ml l1 (mm) lm (mm) Pm (mm) Px (μm)
    0.6 0.6 100 1 200 200 0.1045 5.5
    0.6 0.6 100 1.5 250 166.667 0.1045 5.5
    0.6 0.6 100 2 300 150 0.1045 5.5
    0.6 0.6 100 2.5 350 140 0.1045 5.5
    下载: 导出CSV
  • [1] 朱效宇. 单相机光场成像三维流场测量方法与系统研究[D]. 南京: 东南大学, 2022.

    ZHU X Y. Study of three-dimensional flow field measurement with a single light field camera[D]. Nanjing: Southeast University, 2022. (in Chinese).
    [2] LYNCH K, FAHRINGER T, THUROW B. Three-dimensional particle image velocimetry using a plenoptic camera[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, 2012: AIAA 2012-1056.
    [3] 吴治安. 光场成像三维流场测量系统体标定方法研究[D]. 南京: 东南大学, 2021.

    WU ZH A. Study on volumetric calibration method of light field particle image velocimetry for 3D flow measurement[D]. Nanjing: Southeast University, 2021. (in Chinese).
    [4] SHI SH X, DING J F, NEW T H, et al. Volumetric calibration enhancements for single-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(1): 21. doi: 10.1007/s00348-018-2670-5
    [5] 顾高霏, 赵军, 孔明, 等. 基于光场相机层析法的颗粒三维位置测量[J]. 光子学报, 2020, 49(8): 0812002.

    GU G F, ZHAO J, KONG M, et al. Tomographic three-dimensional particle position measurement based on light field camera[J]. Acta Photonica Sinica, 2020, 49(8): 0812002. (in Chinese).
    [6] SHI SH X, DING J F, NEW T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7): 78. doi: 10.1007/s00348-017-2365-3
    [7] 吴旗, 朱效宇, 许传龙. 基于物理方程的高分辨率光场层析粒子图像测速技术[J]. 光学学报, 2025, 45(1): 0112007.

    WU Q, ZHU X Y, XU CH L. High-resolution light field chromatography particle image velocimetry based on physical equation[J]. Acta Optica Sinica, 2025, 45(1): 0112007. (in Chinese).
    [8] SHI SH X, DING J F, ATKINSON C, et al. A detailed comparison of single-camera light-field PIV and tomographic PIV[J]. Experiments in Fluids, 2018, 59(3): 46. doi: 10.1007/s00348-018-2500-9
    [9] MEI D, DING J F, SHI SH X, et al. High resolution volumetric dual-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(8): 132. doi: 10.1007/s00348-019-2781-7
    [10] ZHU X Y, HOSSAIN M M, LI J, et al. Weight coefficient calculation through equivalent ray tracing method for light field particle image velocimetry[J]. Measurement, 2022, 193: 110982. doi: 10.1016/j.measurement.2022.110982
    [11] CAO L X, ZHANG B, LI J, et al. Characteristics of tomographic reconstruction of light-field Tomo-PIV[J]. Optics Communications, 2019, 442: 132-147. doi: 10.1016/j.optcom.2019.03.026
    [12] ZHU X Y, ZHANG B, LI J, et al. Volumetric resolution of light field imaging and its effect on the reconstruction of light field PIV[J]. Optics Communications, 2020, 462: 125263. doi: 10.1016/j.optcom.2020.125263
    [13] ZHU X Y, WU ZH A, LI J, et al. A pre-recognition SART algorithm for the volumetric reconstruction of the light field PIV[J]. Optics and Lasers in Engineering, 2021, 143: 106625.
    [14] ZHU X Y, XU CH L, HOSSAIN M M, et al. Approach to select optimal cross-correlation parameters for light field particle image velocimetry[J]. Physics of Fluids, 2022, 34(7): 073601. doi: 10.1063/5.0098933
    [15] CAO L X, ZHANG B, HOSSAIN M M, et al. Tomographic reconstruction of light field PIV based on a backward ray-tracing technique[J]. Measurement Science and Technology, 2021, 32(4): 044007. doi: 10.1088/1361-6501/abd281
    [16] ZHU X Y, XU CH L, HOSSAIN M M, et al. Fast and accurate flow measurement through dual-camera light field particle image velocimetry and ordered-subset algorithm[J]. Physics of Fluids, 2023, 35(6): 063603. doi: 10.1063/5.0153135
    [17] FAHRINGER T W, THUROW B S. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV[J]. Measurement Science and Technology, 2016, 27(9): 094005. doi: 10.1088/0957-0233/27/9/094005
    [18] 张志远. 三维流场层析粒子图像变分光流速度测量算法研究[D]. 武汉: 华中科技大学, 2024.

    ZHANG ZH Y. Research on variational optical flow velocity measurement algorithm for three-dimensional flow field tomographic particle image[D]. Wuhan: Huazhong University of Science and Technology, 2024. (in Chinese).
    [19] ZHAO ZH, YAO CH H, SHI SH X, et al. Resolution analysis on light-field particle image velocimetry[J]. Journal of the Optical Society of America A, 2023, 40(4): 729-740. doi: 10.1364/JOSAA.474866
    [20] DEEM E A, ZHANG Y, CATTAFESTA L N, et al. On the resolution of plenoptic PIV[J]. Measurement Science and Technology, 2016, 27(8): 084003. doi: 10.1088/0957-0233/27/8/084003
    [21] RUAN L Y, CHEN B, LI J ZH, et al. Learning to deblur using light field generated and real defocus images[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2022: 16283-16292.
    [22] ZHAO ZH, JI Y, HE Y L, et al. Binocular Scheimpflug light-field PIV[J]. Optics Communications, 2025, 574: 131176. doi: 10.1016/j.optcom.2024.131176
    [23] LIU Y D, ZHU M J, WANG T X, et al. Spatial resolution of light field sectioning pyrometry for flame temperature measurement[J]. Optics and Lasers in Engineering, 2021, 140: 106545. doi: 10.1016/j.optlaseng.2021.106545
    [24] LYU W Q, SHENG H, KE W, et al. Advances in light field spatial super-resolution: a comprehensive literature survey[J]. IEEE Access, 2025, 13: 18470-18497. doi: 10.1109/ACCESS.2025.3532610
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  60
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-17
  • 修回日期:  2025-10-14
  • 录用日期:  2025-11-25
  • 网络出版日期:  2025-12-03

目录

    /

    返回文章
    返回