留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光清洗技术在芯片封装模具中的应用

杨金芳 何涛涛 安浦瑞 杨沛年 袁诗超 毕超 田新叶 汪满 张进兵 李泽靖 令维军

杨金芳, 何涛涛, 安浦瑞, 杨沛年, 袁诗超, 毕超, 田新叶, 汪满, 张进兵, 李泽靖, 令维军. 激光清洗技术在芯片封装模具中的应用[J]. 中国光学(中英文), 2026, 19(1): 49-59. doi: 10.37188/CO.2025-0122
引用本文: 杨金芳, 何涛涛, 安浦瑞, 杨沛年, 袁诗超, 毕超, 田新叶, 汪满, 张进兵, 李泽靖, 令维军. 激光清洗技术在芯片封装模具中的应用[J]. 中国光学(中英文), 2026, 19(1): 49-59. doi: 10.37188/CO.2025-0122
YANG Jin-fang, HE Tao-tao, AN Pu-rui, YANG Pei-nian, YUAN Shi-chao, BI Chao, TIAN Xin-ye, WANG Man, ZHANG Jin-bing, LI Ze-jing, LING Wei-jun. Application of laser cleaning technology in chip packaging molds[J]. Chinese Optics, 2026, 19(1): 49-59. doi: 10.37188/CO.2025-0122
Citation: YANG Jin-fang, HE Tao-tao, AN Pu-rui, YANG Pei-nian, YUAN Shi-chao, BI Chao, TIAN Xin-ye, WANG Man, ZHANG Jin-bing, LI Ze-jing, LING Wei-jun. Application of laser cleaning technology in chip packaging molds[J]. Chinese Optics, 2026, 19(1): 49-59. doi: 10.37188/CO.2025-0122

激光清洗技术在芯片封装模具中的应用

cstr: 32171.14.CO.2025-0122
基金项目: 国家自然科学基金(No. 62405221,No. 62165012);甘肃省高校产业支撑计划项目(No. 2024CYZC-44);甘肃省重点人才项目(No. 2025RCXM023);甘肃省高校科研创新平台重大培育项目(No. 2024CXPT-12);天水市强科技奖补专项项目(No. TS-STK-2024A-277);秦州区科技计划项目(No. 2024-SHFZG-8159);甘肃省科技计划基础研究计划项目(No. 25JRRE009,No. 25JRZE003,No. 25JRRE003);甘肃省高校研究生创新之星项目(No. 2025CXZX-985);天水师范大学研究生创新引导立项项目(No. TYCX2441)
详细信息
    作者简介:

    杨金芳(1992—),女,甘肃天水人,博士,副教授,硕士生导师,西安电子科技大学博士,主要从事近-中红外全固态锁模激光振荡器、飞秒光学参量振荡器及激光清洗方面研究。E-mail:jfyang1314@163.com

    令维军(1968—),男,甘肃天水人,博士,教授,博士生导师,2005年于中国科学院物理研究所获得博士学位,主要从事超短激光脉冲产生及放大方面的研究。E-mail:wjlingts@sina.com

  • 中图分类号: TP394.1;TH691.9

Application of laser cleaning technology in chip packaging molds

Funds: Supported by National Natural Science Foundation of China (No. 62405221, No. 62165012); Gansu Province University Industry Support Plan Project (No. 2024CYZC-44); Key Talent Project of Gansu Province (No. 2025RCXM023); Major Cultivation Project of University Research and Innovation Platform of Gansu Provincial Department of Education (No. 2024CXPT-12); Tianshui Strong Science and Technology Award Special Project (No. TS-STK-2024A-277); Qinzhou District Science and Technology Plan Project (No. 2024-SHFZG-8159); Basic Research Program of Gansu Provincial Science and Technology Plan (No. 25JRRE009, No. 25JRZE003, No. 25JRRE003); Gansu Province University Graduate Student Innovation Star Project (No. 2025CXZX-985); Postgraduate Research Innovation Guiding Project of Tianshui Normal University (No. TYCX2441)
More Information
  • 摘要:

    激光清洗技术作为一种高效、环保的表面处理手段,在芯片封装模具清洗领域具有重要的应用潜力。本文系统探究了激光参数(脉冲宽度、重复频率、平均功率)对基材为 P20 合金和 ASP23 合金镀铬的模具表面环氧塑封料 (EMC) 污染物的清洗效果影响。实验采用1064 nm掺钕脉冲激光器,将高斯光束整形为平顶光束,结合振镜"弓"字扫描路径,以单一变量法优化工艺参数。实验结果表明,激光能量密度为 0.55−0.77 J/cm2 时,需协同调节脉冲宽度与重复频率,以平衡热输入,可实现污染物完全去除且基材零损伤。参数敏感性分析显示,最佳占空比范围为 0.8%~1.0%。此外,功率超过阈值(150 ns,50%或200 ns,50%)会导致基材损伤,表明参数匹配对清洗效果与材料保护至关重要。本研究为芯片封装模具提供了一种高精度、非接触的绿色清洗方案,验证了激光清洗技术在集成电路领域的可行性。

     

  • 图 1  激光器多模和单模激光光束能量仿真图

    Figure 1.  Simulation diagrams of laser beam energy for multimode and single-mode lasers

    图 2  (a)模具表面污染图;(b)模具表面原貌图

    Figure 2.  (a) Mold surface contamination diagram; (b) original appearance diagram of the mold surface

    图 3  激光清洗系统示意图

    Figure 3.  Schematic diagram of the laser cleaning system

    图 4  脉宽150 ns,重频54 kHz时,单脉冲能量最佳范围图

    Figure 4.  Optimal single-pulse energy range diagram at a pulse width of 150 ns and a repetition rate of 54 kHz

    图 5  脉宽为150 ns和重频为54 kHz,功率分别为最大功率的(a) 10%、(b) 20%、(c) 30%、(d) 40%、(e) 50%、(f) 60%、(g) 70%、(h) 80%时,激光清洗显微镜样貌图

    Figure 5.  Microscopic images of the surfaces cleaned by lasers with a pulse width of 150 ns and repetition rate of 54 kHz, and (a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80% of the maximum power

    图 6  固定脉宽为150 ns,重频为54 kHz时,功率分别为最大功率的(a) 30%、(b) 32.5%、(c) 35%、(d) 37.5%、(e) 40%激光清洗显微镜样貌图

    Figure 6.  Microscopic images of the surfaces cleaned by lasers with a pulse width of 150 ns and repetition rate of 54 kHz, and (a) 30%, (b) 32.5%, (c) 35%, (d) 37.5%, (e) 40% of the maximum power

    图 7  脉宽200 ns 和重频45 kHz时,功率分别为最大功率的(a) 15%、(b) 20%、(c) 25%、(d) 30%、(e) 35%、(f) 40%、(g) 45%、(h) 50%激光清洗显微镜样貌图

    Figure 7.  Microscopic morphology images of the surfaces cleaned by lasers with a pulse width of 200 ns, repetition frequency of 45 kHz, and (a) 15%, (b) 20%, (c) 25%, (d) 30%, (e) 35%, (f) 40%, (g) 45%, (h) 50% of the maximum power

    图 8  脉宽200 ns、重频45 kHz时,功率分别为最大功率的(a) 25%、(b) 27.5%、(c) 30%、(d) 32.5%、(e) 35%对应的激光清洗显微镜样貌

    Figure 8.  Microscopic morphology of the surfaces cleaned by lasers with a pulse width of 200 ns, a repetition frequency of 45 kHz, and powers of (a) 25%, (b) 27.5%, (c) 30%, (d) 32.5%, (e) 35% of the maximum power

    图 9  脉宽为200 ns,重频为45 kHz时,单脉冲能量最佳范围

    Figure 9.  Optimal single-pulse energy ranges at a pulse width of 200 ns and a repetition rate of 45 kHz

    图 10  脉宽150 ns和功率175 W (35%),重复频率分别为 24 kHz、 34 kHz、 44 kHz、 54 kHz、 64 kHz、 74 kHz时激光清洗显微镜样貌图

    Figure 10.  Microscopic images of the surfaces cleaned by lasers with a pulse width of 150 ns and a power of 175 W (35%), and repetition frequencies of 24 kHz, 34 kHz, 44 kHz, 54 kHz, 64 kHz, and 74 kHz

    图 11  脉宽 200 ns和功率 175 W (35%),重复频率分别为 15 kHz、 25 kHz、 35 kHz、 45 kHz、 55 kHz、 65 kHz激光清洗显微镜样貌图

    Figure 11.  Microscopic morphology images of the surfaces cleaned by lasers with a pulse width of 200 ns, a power of 175 W (35%), and repetition frequencies of 15 kHz, 25 kHz, 35 kHz, 45 kHz, 55 kHz, 65 kHz

    表  1  激光器单模和多模清洗效果对比

    Table  1.   Comparison of single-mode and multimode laser cleaning effect

    激光模式能量分布工作能力工作效率基材损伤适用场景
    单模中间强,两翼弱较差有/轻微除锈
    多模分布均匀较差轻微/无模具
    下载: 导出CSV

    表  2  激光器和清洗系统参数

    Table  2.   Parameters of the laser and cleaning system

    名称 数值
    波长(λ)/nm 1064
    平均功率(P)/W 0~500
    脉冲宽度(w)/ns 30~500
    重复频率(f)/kHz 1~4000
    振镜规格/mm 110×110
    下载: 导出CSV

    表  3  脉宽 150 ns 和重频 54 kHz下,不同功率对应单脉冲能量的值

    Table  3.   Single-pulse energy at different power levels under a pulse width of 150 ns and a repetition rate of 54 kHz

    功率(500 W) 单脉冲能量(mJ) 功率(500 W) 单脉冲能量(mJ)
    10% 0.93 30.0% 2.78
    20% 1.85 32.5% 3.01
    30% 2.78 35.0% 3.24
    40% 3.70 37.5% 3.47
    50% 4.63 40.0% 3.70
    60% 5.56 \ \
    70% 6.48 \ \
    80% 7.41 \ \
    下载: 导出CSV

    表  4  脉宽200 ns、重频 45 kHz时不同功率对应单脉冲能量

    Table  4.   Single-pulse energy at different power levels under a pulse width of 200 ns and a repetition rate of 45 kHz

    功率(500 W)单脉冲能量(mJ)功率(500 W)单脉冲能量(mJ)
    20%2.2225%2.78
    25%2.7827.5%3.06
    30%3.3330%3.33
    35%3.8932.5%3.61
    40%4.4435.0%3.89
    45%5.00\\
    50%5.56\\
    55%6.11\\
    下载: 导出CSV
  • [1] 张自豪, 余晓畅, 王英, 等. 脉冲YAG激光清洗轮胎模具的实验研究[J]. 激光技术, 2018, 42(1): 127-130. doi: 10.7510/jgjs.issn.1001-3806.2018.01.025

    ZHANG Z H, YU X C, WANG Y, et al. Experimental study about cleaning of tire molds with pulse YAG laser[J]. Laser Technology, 2018, 42(1): 127-130. (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2018.01.025
    [2] YANG H, LIU H X, GAO R X, et al. Numerical simulation of paint stripping on CFRP by pulsed laser[J]. Optics & Laser Technology, 2022, 145: 107450.
    [3] ASMUS J F, MURPHY C G, MUNK W H. Studies on the interaction of laser radiation with art artifacts[C]. Proceedings of SPIE 0041, Developments in laser Technology II, SPIE, 1974: 19-30.
    [4] ZHOU ZH H, SUN W P, WU J J, et al. The fundamental mechanisms of laser cleaning technology and its typical applications in industry[J]. Processes, 2023, 11(5): 1445. doi: 10.3390/pr11051445
    [5] LEI Z L, TIAN Z, CHEN Y B. Laser cleaning technology in industrial fields[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030005.
    [6] 王宏睿. 激光清洗原理与应用研究[J]. 清洗世界, 2006, 22(9): 20-23. doi: 10.3969/j.issn.1671-8909.2006.09.005

    WANG H R. Principle and applied research on laser cleaning[J]. Cleaning World, 2006, 22(9): 20-23. (in Chinese). doi: 10.3969/j.issn.1671-8909.2006.09.005
    [7] STEEN W M, MAZUMDER J. Laser cleaning[M]//STEEN W M, MAZUMDER J. Laser Material Processing. London: Springer, 2010: 417-440.
    [8] 林乔, 石敏球, 张欣, 等. 激光清洗及其应用进展[J]. 广州化工, 2010, 38(6): 23-25.

    LIN Q, SHI M Q, ZHANG X, et al. Laser cleaning and its applications[J]. Guangzhou Chemical Industry, 2010, 38(6): 23-25. (in Chinese).
    [9] SCHAWLOW A L. Lasers: the intense, monochromatic, coherent light from these new sources shows many unfamiliar properties[J]. Science, 1965, 149(3679): 13-22. doi: 10.1126/science.149.3679.13
    [10] ZHOU K, SANG S G, WANG C Y, et al. Principle, application and development trend of laser cleaning[J]. Journal of Physics: Conference Series, 2022, 2383(1): 012075. doi: 10.1088/1742-6596/2383/1/012075
    [11] 李浩宇, 杨峰, 郭嘉伟, 等. 激光清洗的发展现状与前景[J]. 激光技术, 2021, 45(5): 654-661.

    LI H Y, YANG F, GUO J W, et al. Development status and prospect of laser cleaning[J]. Laser Technology, 2021, 45(5): 654-661. (in Chinese).
    [12] ZHAO H CH, QIAO Y L, DU X, et al. Laser cleaning performance and mechanism in stripping of Polyacrylate resin paint[J]. Applied Physics A, 2020, 126(5): 360. doi: 10.1007/s00339-020-03551-0
    [13] 刘锴, 范卫星, 王平秋, 等. 激光等离子体法清洗微纳颗粒的物态变化研究[J]. 激光技术, 2021, 45(4): 405-410.

    LIU K, FAN W X, WANG P Q, et al. Study on the state change characteristics of cleaning micro-nano particles by laser plasma method[J]. Laser Technology, 2021, 45(4): 405-410. (in Chinese).
    [14] BEDAIR S M, SMITH H P. Atomically clean surfaces by pulsed laser bombardment[J]. Journal of Applied Physics, 1969, 40(12): 4776-4781. doi: 10.1063/1.1657288
    [15] ZHU G D, WANG SH R, CHENG W, et al. Corrosion and wear performance of aircraft skin after laser cleaning[J]. Optics & Laser Technology, 2020, 132: 106475.
    [16] WANG S R, ZHANG M Y, et al. Application of laser cleaning in postwelding treatment of aluminum alloy[J]. Applied Optics, 2020, 59(34): 10967-10972.
    [17] ZHU G D, WANG S R, CHENG W, et al. Investigation on the surface properties of 5A12 aluminum alloy after Nd: YAG laser cleaning[J]. Coatings, 2019, 9(9): 578-593.
    [18] 朱国栋, 王守仁, 成巍, 等. 激光清洗在金属表面处理中的应用研究进展[J]. 山东科学, 2019, 32(4): 38-45,73.

    ZHU G D, WANG SH R, CHENG W, et al. Advances in the application of laser cleaning to metal surface treatment[J]. Shandong Science, 2019, 32(4): 38-45,73. (in Chinese).
    [19] 谭东晖, 陆冬生, 宋文栋, 等. 准分子激光直接清洗硅片上油脂的实验研究[J]. 激光技术, 1995, 19(5): 319-320.

    TAN D H, LU D SH, SONG W D, et al. Experiment studies of excimer laser cleaning of grease-contaminated Si substrate[J]. Laser Technology, 1995, 19(5): 319-320. (in Chinese).
    [20] 谭东晖, 陆冬生, 宋文栋, 等. 激光清洗基片表面温度的有限元分析及讨论[J]. 华中理工大学学报, 1996, 24(6): 50-53.

    TAN D H, LU D S, SONG W D, et al. A finite element analysis of the temperature distribution on a substrate surface during laser cleaning[J]. Journal of Huazhong University of Science and Technology, 1996, 24(6): 50-53. (in Chinese).
    [21] 王泽敏, 曾晓雁, 黄维玲. 脉冲激光除漆机理及工艺参数的研究[J]. 材料保护, 2000, 33(4): 21-22,59.

    WANG Z M, ZENG X Y, HUANG W L. Parameters and mechanisms of paintcoat laser cleaning[J]. Materiais Protection, 2000, 33(4): 21-22,59. (in Chinese).
    [22] 史兴宽, 徐传义, 任敬心, 等. 光学基片表面镀金薄膜的激光清洗阈值和损伤阈值[J]. 航空制造技术, 2000(5): 34-36.

    SHI X K, XU CH Y, REN J X, et al. Laser cleaning threshold and damage threshold of gold-plating thin film on optical substrate surface[J]. Aeronautical Manufacturing Technology, 2000(5): 34-36. (in Chinese).
    [23] 邹涛, 杨和逸, 仇连波. 活络模激光清洗技术的开发应用及发展方向[J]. 橡塑技术与装备, 2023, 49(3): 5-13.

    ZOU T, YANG H Y, QIU L B. Development application and direction of laser cleaning technology for active mode[J]. China Rubber/Plastics Technology and Equipment, 2023, 49(3): 5-13. (in Chinese).
    [24] CUCCI C, DE PASCALE O, SENESI G S. Assessing laser cleaning of a limestone monument by fiber optics reflectance spectroscopy (FORS) and visible and near-infrared (VNIR) hyperspectral imaging (HSI)[J]. Minerals, 2020, 10(12): 1052. doi: 10.3390/min10121052
    [25] GU J Y, SU X, JIN Y, et al. Research progress and prospects of laser cleaning for CFRP: a review[J]. Composites Part A: Applied Science and Manufacturing, 2024, 185: 108349. doi: 10.1016/j.compositesa.2024.108349
    [26] WANG Y X, YU ZH H, YU L SH, et al. Study on removal mechanism of TC4 oxide film by nanosecond pulsed laser cleaning in air environment[J]. Optics & Laser Technology, 2025, 181: 111856.
    [27] RAZAB M K A A, NOOR A M, JAAFAR M S, et al. A review of incorporating Nd: YAG laser cleaning principal in automotive industry[J]. Journal of Radiation Research and Applied Sciences, 2018, 11(4): 393-402. doi: 10.1016/j.jrras.2018.08.002
    [28] 张雨阳, 杨伟, 牛富增, 等. 纳秒激光对硅基底上的微纳颗粒的清洗研究[J]. 激光与红外, 2025, 55(9): 1406-1413. doi: 10.3969/j.issn.1001-5078.2025.09.011

    ZHANG Y Y, YANG W, NIU F Z, et al. Nanosecond laser cleaning of micro particles on silicon substrates[J]. Laser & Infrared, 2025, 55(9): 1406-1413. (in Chinese). doi: 10.3969/j.issn.1001-5078.2025.09.011
    [29] WAN ZH, YANG X F, XIA G F, et al. Effect of laser power on cleaning mechanism and surface properties[J]. Applied Optics, 2020, 59(30): 9482-9490. doi: 10.1364/AO.399691
    [30] 陈玲, 王非森, 文申柳, 等. 激光清洗对超低碳贝氏体钢腐蚀性能的影响[J/OL]. 应用激光, 1-10 [2025-12-19].

    CHEN L, WANG F S, WEN SH L, et al. Effect of Laser Cleaning on Mechanical Properties of Ultra-Low Carbon Bainitic Steel[J/OL]. Applied Laser, 1-10 [2025-12-19].
    [31] ANTONOPOULOU-ATHERA N, KALATHAKIS C, CHATZITHEODORIDIS E, et al. Theoretical and experimental approach on laser cleaning of coins[J]. SN Applied Sciences, 2019, 1(3): 238. doi: 10.1007/s42452-019-0255-4
    [32] PELOSI C, FODARO D, SFORZINI L, et al. Study of the laser cleaning on plaster sculptures. The effect of laser irradiation on the surfaces[J]. Optics and Spectroscopy, 2013, 114(6): 917-928. doi: 10.1134/S0030400X13060118
    [33] 王伟, 王蔚, 姚天昊, 等. 激光去除碳纤维复合材料表面树脂工艺试验及胶接性能研究[J]. 红外与激光工程, 2025, 54(6): 182-194. doi: 10.3788/IRLA20240556

    WANG W, WANG W, YAO T H, et al. Experimental study on laser removal of surface resin in carbon fiber composites and adhesive bonding performance[J]. Infrared and Laser Engineering, 2025, 54(6): 182-194. (in Chinese). doi: 10.3788/IRLA20240556
    [34] RAUH B, KRELING S, KOLB M, et al. UV-laser cleaning and surface characterization of an aerospace carbon fibre reinforced polymer[J]. International Journal of Adhesion and Adhesives, 2018, 82: 50-59. doi: 10.1016/j.ijadhadh.2017.12.016
    [35] 李晨毓, 胡文哲, 张雪雁, 等. 双波长纳秒激光清洗技术在大理石文物上的应用[J]. 中国光学(中英文), 2024, 17(5): 1050-1059. doi: 10.37188/CO.2024-0002

    LI C L, HU W ZH, ZHANG X Y. Application of dual-wavelength nanosecond laser cleaning technology on stone artifacts[J]. Chinese Optics, 2024, 17(5): 1050-1059. (in Chinese). doi: 10.37188/CO.2024-0002
    [36] 葛春晖, 刘妍君, 年福东, 等. 基于半监督度量学习的激光诱导击穿光谱检测白芍中的重金属含量[J]. 分析化学, 2024, 53(4): 1254-1265. .

    GE C H, LIU Y J, CHEN M S, et al. Prediction of Wind Turbine Lubricating Oil’s Acid Value by Ordinary Least Square Method Based on Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy Through Higher-Order Derivative Combined with Angular Metric[J]. Chinese Journal of Analytical Chemistry, 2024, 53(4): 1254-1265. (in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  64
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-18
  • 修回日期:  2025-10-14
  • 录用日期:  2025-11-13
  • 网络出版日期:  2025-12-03

目录

    /

    返回文章
    返回