-
摘要:
激光清洗技术作为一种高效、环保的表面处理手段,在芯片封装模具清洗领域具有重要的应用潜力。本研究系统探究了激光参数(脉冲宽度、重复频率、平均功率)对 P20 合金和 ASP23 合金镀铬模具表面环氧塑封料 (EMC) 污染物的清洗效果影响。实验采用
1064 nm掺钕脉冲激光器,将高斯光束整形为平顶光束,结合振镜"弓"字扫描路径,以单一变量法优化工艺参数。实验结果表明,激光能量密度为 0.55−0.77 J/cm2 时,脉冲宽度与重复频率需协同调节以平衡热输入,可实现污染物完全去除且基材零损伤。参数敏感性分析显示,最佳占空比范围为 0.8%~1.0%。此外,功率超过阈值(150 ns,50%或200 ns,50%)会导致基材损伤,这表明参数匹配对清洗效果与材料保护至关重要。本研究为芯片封装模具提供了一种高精度、非接触的绿色清洗方案,验证了激光清洗技术在集成电路领域的可行性。Abstract:Laser cleaning technology, as an efficient and environmentally friendly surface treatment method, plays significant application potential in the field of chip packaging molds cleaning. This research systematically investigated the influence of laser parameters (pulse duration, repetition frequency and average power) on the cleaning effect of chromium-plated mold surface epoxy encapsulation materials (EMC) contaminated by P20 alloy and ASP23 alloy. The experiment employed a
1064 nm neodymium-doped pulsed laser, reshaping the Gaussian beam into a flat-top beam, and combining with a "bow" shape scanning path of the galvanometer mirror. The process parameters were optimized using a single-variable method. The experimental results indicated that when the laser energy density was between 0.55 and 0.77 J/cm2, the pulse duration and repetition rate needed to be adjusted in coordination to balance the thermal input, enabling complete removal of contaminants without any damage to the substrate. Parameter sensitivity analysis revealed that the optimal duty cycle range was from 0.8% to 1.0%. Furthermore, when the power exceeded the threshold (150 ns@50% average power or 200 ns@50% average power), it may cause damage to the substrate, which indicated that laser parameter matching was crucial for the cleaning effect and material protection. This research provided a high-precision, non-contact and environmentally friendly cleaning solution for chip packaging molds, and verified the feasibility of laser cleaning technology in the field of integrated circuits.-
Key words:
- laser cleaning technology /
- chip packaging mold /
- duty cycle /
- surface treatment
-
图 4 脉宽 150 ns和重频 54 kHz,功率分别为最大功率的(a) 10%、(b) 20%、(c) 30%、(d) 40%、(e) 50%、(f) 60%、(g) 70%、(h) 80%时,激光清洗显微镜样貌图
Figure 4. Microscopic images of laser-cleaned surfaces with a pulse duration of 150 ns and repetition rate of 54 kHz, with power levels of (a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, and (h) 80%
图 7 脉宽200 ns 和重频45 kHz时,功率分别为最大功率的(a) 15%、(b) 20%、(c) 25%、(d) 30%、(e) 35%、(f) 40%、(g) 45%、(h) 50%激光清洗显微镜样貌图
Figure 7. Microscopic morphology images of laser cleaning with pulse duration of 200 ns, repetition frequency of 45 kHz, and powers of (a) 15%, (b) 20%, (c) 25%, (d) 30%, (e) 35%, (f) 40%, (g) 45%, (h) 50%.
表 1 激光器单模和多模清洗效果对比
Table 1. Comparison of Single-Mode and Multimode Laser Cleaning effect.
激光模式 能量分布 工作能力 工作效率 基材损伤 适用场景 单模 中间强,两翼弱 强 较差 有/轻微 除锈 多模 分布均匀 较差 强 轻微/无 模具 表 2 激光器和清洗系统参数
Table 2. Parameters of the laser and cleaning system
名称 数值 单位 波长(λ) 1064 nm 平均功率(P) 0-500 W 脉冲宽度(w) 30-500 ns 单脉冲能量(Pe) 0-50 mJ 重复频率(f) 1- 4000 kHz 振镜规格 110*110 mm 表 3 脉宽 150 ns 和重频 54 kHz下,不同功率对应单脉冲能量的值
Table 3. Single-pulse energy at different power levels under a pulse duration of 150 ns and a repetition rate of 54 kHz
功率(500 W) 单脉冲能量(mJ) 功率(500 W) 单脉冲能量(mJ) 10% 0.93 30.0% 2.78 20% 1.85 32.5% 3.01 30% 2.78 35.0% 3.24 40% 3.70 37.5% 3.47 50% 4.63 40.0% 3.70 60% 5.56 \ \ 70% 6.48 \ \ 80% 7.41 \ \ 表 4 脉宽200 ns和重频 45 kHz时不同功率对应单脉冲能量
Table 4. Single-pulse energy at different power levels under a pulse width of 200 ns and a repetition rate of 45 kHz
功率(500 W) 单脉冲能量(mJ) 功率(500 W) 单脉冲能量(mJ) 20% 2.22 25% 2.78 25% 2.78 27.5% 3.06 30% 3.33 30% 3.33 35% 3.89 32.5% 3.61 40% 4.44 35.0% 3.89 45% 5.00 \ \ 50% 5.56 \ \ 55% 6.11 \ \ -
[1] 张自豪, 余晓畅, 王英, 等. 脉冲YAG激光清洗轮胎模具的实验研究[J]. 激光技术, 2018, 42(1): 127-130. doi: 10.7510/jgjs.issn.1001-3806.2018.01.025ZHANG Z H, YU X C, WANG Y, et al. Experimental study about cleaning of tire molds with pulse YAG laser[J]. Laser Technology, 2018, 42(1): 127-130. (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2018.01.025 [2] YANG H, LIU H X, GAO R X, et al. Numerical simulation of paint stripping on CFRP by pulsed laser[J]. Optics & Laser Technology, 2022, 145: 107450. [3] ASMUS J F, MURPHY C G, MUNK W H. Studies on the interaction of laser radiation with art artifacts[C]. Proceedings of SPIE 0041, Developments in laser Technology II, SPIE, 1974: 19-30. [4] ZHOU ZH H, SUN W P, WU J J, et al. The fundamental mechanisms of laser cleaning technology and its typical applications in industry[J]. Processes, 2023, 11(5): 1445. doi: 10.3390/pr11051445 [5] LEI Z L, TIAN Z, CHEN Y B. Laser cleaning technology in industrial fields[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030005. [6] 王宏睿. 激光清洗原理与应用研究[J]. 清洗世界, 2006, 22(9): 20-23. doi: 10.3969/j.issn.1671-8909.2006.09.005WANG H R. Principle and applied research on laser cleaning[J]. Cleaning World, 2006, 22(9): 20-23. (in Chinese). doi: 10.3969/j.issn.1671-8909.2006.09.005 [7] STEEN W M, MAZUMDER J. Laser cleaning[M]//STEEN W M, MAZUMDER J. Laser Material Processing. London: Springer, 2010: 417-440. [8] 林乔, 石敏球, 张欣, 等. 激光清洗及其应用进展[J]. 广州化工, 2010, 38(6): 23-25.LIN Q, SHI M Q, ZHANG X, et al. Laser cleaning and its applications[J]. Guangzhou Chemical Industry, 2010, 38(6): 23-25. (in Chinese). [9] SCHAWLOW A L. Lasers: the intense, monochromatic, coherent light from these new sources shows many unfamiliar properties[J]. Science, 1965, 149(3679): 13-22. doi: 10.1126/science.149.3679.13 [10] ZHOU K, SANG S G, WANG C Y, et al. Principle, application and development trend of laser cleaning[J]. Journal of Physics: Conference Series, 2022, 2383(1): 012075. doi: 10.1088/1742-6596/2383/1/012075 [11] 李浩宇, 杨峰, 郭嘉伟, 等. 激光清洗的发展现状与前景[J]. 激光技术, 2021, 45(5): 654-661.LI H Y, YANG F, GUO J W, et al. Development status and prospect of laser cleaning[J]. Laser Technology, 2021, 45(5): 654-661. (in Chinese). [12] ZHAO H CH, QIAO Y L, DU X, et al. Laser cleaning performance and mechanism in stripping of Polyacrylate resin paint[J]. Applied Physics A, 2020, 126(5): 360. doi: 10.1007/s00339-020-03551-0 [13] 刘锴, 范卫星, 王平秋, 等. 激光等离子体法清洗微纳颗粒的物态变化研究[J]. 激光技术, 2021, 45(4): 405-410.LIU K, FAN W X, WANG P Q, et al. Study on the state change characteristics of cleaning micro-nano particles by laser plasma method[J]. Laser Technology, 2021, 45(4): 405-410. (in Chinese). [14] MEI L F, LIN L, YAN D B, et al. Numerical analysis and experimental research on the removal of CuO particles from monocrystalline silicon surfaces by picosecond laser[J]. Materials Science in Semiconductor Processing, 2024, 171: 107994. doi: 10.1016/j.mssp.2023.107994 [15] MIAO R P, WANG T, YAO T, et al. Experimental and numerical simulation analysis of laser paint removal of aluminum alloy[J]. Journal of Laser Applications, 2022, 34(1): 012002. doi: 10.2351/7.0000522 [16] 许巧云, 田骥, 吴昌盛, 等. 1064 nm激光清洗玻璃绝缘子表面微米级SiO2污秽[J]. 高电压技术, 2022, 48(3): 883-891.XU Q Y, TIAN J, WU CH S, et al. Cleaning of micrometer SiO2 contamination on glass insulator surface by 1064 nm laser[J]. High Voltage Engineering, 2022, 48(3): 883-891. (in Chinese). [17] NIE J H, ZHANG H, ZHANG D H, et al. Removal mechanism of laser cleaning for inorganic thermal control coatings on aluminum alloys[J]. Applied Surface Science, 2023, 633: 157578. doi: 10.1016/j.apsusc.2023.157578 [18] BEDAIR S M, SMITH H P. Atomically clean surfaces by pulsed laser bombardment[J]. Journal of Applied Physics, 1969, 40(12): 4776-4781. doi: 10.1063/1.1657288 [19] ZHU G D, WANG SH R, CHENG W, et al. Corrosion and wear performance of aircraft skin after laser cleaning[J]. Optics & Laser Technology, 2020, 132: 106475. [20] ZHU G D, WANG S R, ZHANG M Y, et al. Application of laser cleaning in postwelding treatment of aluminum alloy[J]. Applied Optics, 2020, 59(34): 10967-10972. doi: 10.1364/AO.406171 [21] ZHU G D, WANG SH R, CHENG W, et al. Investigation on the surface properties of 5A12 aluminum alloy after Nd: YAG laser cleaning[J]. Coatings, 2019, 9(9): 578. doi: 10.3390/coatings9090578 [22] 朱国栋, 王守仁, 成巍, 等. 激光清洗在金属表面处理中的应用研究进展[J]. 山东科学, 2019, 32(4): 38-45,73.ZHU G D, WANG SH R, CHENG W, et al. Advances in the application of laser cleaning to metal surface treatment[J]. Shandong Science, 2019, 32(4): 38-45,73. (in Chinese). [23] 谭东晖, 陆冬生, 宋文栋, 等. 准分子激光直接清洗硅片上油脂的实验研究[J]. 激光技术, 1995, 19(5): 319-320.TAN D H, LU D S, SONG W D, et al. Experiment studies of excimer laser cleaning of grease-contaminated Si substrate[J]. Laser Technology, 1995, 19(5): 319-320. (in Chinese). [24] 谭东晖, 陆冬生, 宋文栋, 等. 激光清洗基片表面温度的有限元分析及讨论[J]. 华中理工大学学报, 1996, 24(6): 50-53.TAN D H, LU D S, SONG W D, et al. A finite element analysis of the temperature distribution on a substrate surface during laser cleaning[J]. Journal of Huazhong University of Science and Technology, 1996, 24(6): 50-53. (in Chinese). [25] 王泽敏, 曾晓雁, 黄维玲. 脉冲激光除漆机理及工艺参数的研究[J]. 材料保护, 2000, 33(4): 21-22,59.WANG Z M, ZENG X Y, HUANG W L. Parameters and mechanisms of paintcoat laser cleaning[J]. Materiais Protection, 2000, 33(4): 21-22,59. (in Chinese). [26] 史兴宽, 徐传义, 任敬心, 等. 光学基片表面镀金薄膜的激光清洗阈值和损伤阈值[J]. 航空制造技术, 2000(5): 34-36.SHI X K, XU CH Y, REN J X, et al. Laser cleaning threshold and damage threshold of gold-plating thin film on optical substrate surface[J]. Aeronautical Manufacturing Technology, 2000(5): 34-36. (in Chinese). [27] 邹涛, 杨和逸, 仇连波. 活络模激光清洗技术的开发应用及发展方向[J]. 橡塑技术与装备, 2023, 49(3): 5-13.ZOU T, YANG H Y, QIU L B. Development application and direction of laser cleaning technology for active mode[J]. China Rubber/Plastics Technology and Equipment, 2023, 49(3): 5-13. (in Chinese). [28] CUCCI C, DE PASCALE O, SENESI G S. Assessing laser cleaning of a limestone monument by fiber optics reflectance spectroscopy (FORS) and visible and near-infrared (VNIR) hyperspectral imaging (HSI)[J]. Minerals, 2020, 10(12): 1052. doi: 10.3390/min10121052 [29] GU J Y, SU X, JIN Y, et al. Research progress and prospects of laser cleaning for CFRP: a review[J]. Composites Part A: Applied Science and Manufacturing, 2024, 185: 108349. doi: 10.1016/j.compositesa.2024.108349 [30] WANG Y X, YU ZH H, YU L SH, et al. Study on removal mechanism of TC4 oxide film by nanosecond pulsed laser cleaning in air environment[J]. Optics & Laser Technology, 2025, 181: 111856. [31] RAZAB M K A A, NOOR A M, JAAFAR M S, et al. A review of incorporating Nd: YAG laser cleaning principal in automotive industry[J]. Journal of Radiation Research and Applied Sciences, 2018, 11(4): 393-402. doi: 10.1016/j.jrras.2018.08.002 [32] NIE J H, ZHANG H, ZHANG D H, et al. Removal mechanism of laser cleaning for inorganic thermal control coatings on aluminum alloys[J]. Applied Surface Science, 2023, 633: 157578. (查阅网上资料, 本条文献与第17条文献重复, 请确认). [33] WAN ZH, YANG X F, XIA G F, et al. Effect of laser power on cleaning mechanism and surface properties[J]. Applied Optics, 2020, 59(30): 9482-9490. doi: 10.1364/AO.399691 [34] ANTONOPOULOU-ATHERA N, KALATHAKIS C, CHATZITHEODORIDIS E, et al. Theoretical and experimental approach on laser cleaning of coins[J]. SN Applied Sciences, 2019, 1(3): 238. doi: 10.1007/s42452-019-0255-4 [35] PELOSI C, FODARO D, SFORZINI L, et al. Study of the laser cleaning on plaster sculptures. The effect of laser irradiation on the surfaces[J]. Optics and Spectroscopy, 2013, 114(6): 917-928. doi: 10.1134/S0030400X13060118 [36] RAUH B, KRELING S, KOLB M, et al. UV-laser cleaning and surface characterization of an aerospace carbon fibre reinforced polymer[J]. International Journal of Adhesion and Adhesives, 2018, 82: 50-59. doi: 10.1016/j.ijadhadh.2017.12.016 -
下载: