留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于成像形态学特征的电离粒子甄别与提取

徐守龙 王治林 黄有骏 李卿鑫 邹树梁

徐守龙, 王治林, 黄有骏, 李卿鑫, 邹树梁. 基于成像形态学特征的电离粒子甄别与提取[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0134
引用本文: 徐守龙, 王治林, 黄有骏, 李卿鑫, 邹树梁. 基于成像形态学特征的电离粒子甄别与提取[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0134
XU Shou-long, WANG Zhi-lin, HUANG You-Jun, LI Qing-Xin, ZOU Shu-liang. Ionizing Particle Discrimination and Extraction Based on Morphological Imaging Features[J]. Chinese Optics. doi: 10.37188/CO.2025-0134
Citation: XU Shou-long, WANG Zhi-lin, HUANG You-Jun, LI Qing-Xin, ZOU Shu-liang. Ionizing Particle Discrimination and Extraction Based on Morphological Imaging Features[J]. Chinese Optics. doi: 10.37188/CO.2025-0134

基于成像形态学特征的电离粒子甄别与提取

cstr: 32171.14.CO.2025-0134
基金项目: 国家自然科学基金 (No. 11905102)
详细信息
    作者简介:

    徐守龙(1988—),男,甘肃嘉峪关人,博士,副教授,2017年于南华大学获得博士学位,主要从事CMOS有源像素传感器电离辐射损伤及核辐射探测技术的研究。E-mail:xusl@usc.edu.cn

  • 中图分类号: TP394.1;TH691.9

Ionizing Particle Discrimination and Extraction Based on Morphological Imaging Features

Funds: Supported by this research is funded by the National Natural Science Foundation of China (No. 11905102).
More Information
  • 摘要:

    为避免脉冲堆积效应,改善辐射电离粒子甄别效率。本文利用 CMOS 有源像素传感器对电离粒子的光学响应特性,提出了一种基于成像形态学特征的粒子甄别方法。通过分析对比不同电离粒子响应事件特征,阐明其受增益及积分时间的调控机制,并对甄别效果进行验证。研究结果表明,α粒子响应事件的像素个数、平均像素值、矩形度、凸度与紧致度等5个特征参数相较于β和γ粒子响应事件存在显著差异。β和γ粒子响应事件在像素个数、矩形度和凸度等特征参数上相似,但可通过对比平均像素值或紧致度加以区分。利用响应事件所包含的像素个数来甄别α事件的准确率大于99%,利用平均像素值甄别β、γ事件的准确率大于82%。本文研究成果为混合辐射场的电离粒子甄别提供了新的方法和研究基础,为发展核环境电离粒子甄别技术,以及抗辐射噪声干扰技术提供新的路径与理论支撑。

     

  • 图 1  实验系统图

    Figure 1.  Schematic diagram of the experimental setup

    图 2  响应事件形成原理 (a) 9 db α事件 (b) 9 db β事件 (c) 9 db γ事件

    Figure 2.  Schematic illustration of the formation mechanism of response events: (a) 9 dB α event, (b) 9 dB β event, and (c) 9 dB γ event.

    图 3  响应事件像素个数对比 (a) α和β事件 (b) α和γ事件 (c) β和γ事件

    Figure 3.  Comparison of the number of pixels per response event: (a) α and β events, (b) α and γ events, and (c) β and γ events.

    图 4  响应事件长宽比对比 (a) α和β事件 (b) α和γ事件 (c) β和γ事件

    Figure 4.  Comparison of the aspect ratios of response events: (a) α and β events, (b) α and γ events, and (c) β and γ events.

    图 5  响应事件凸度对比 (a) α和β事件 (b) α和γ事件 (c) β和γ事件

    Figure 5.  Comparison of the convexity of response events: (a) α and β events, (b) α and γ events, and (c) β and γ events.

    图 6  响应事件矩形度对比 (a) α和β事件 (b) α和γ事件 (c) β和γ事件

    Figure 6.  Comparison of the rectangularity of response events: (a) α and β events, (b) α and γ events, and (c) β and γ events.

    图 7  响应事件紧致度对比 (a) α和β事件 (b) α和γ事件 (c) β和γ事件

    Figure 7.  Comparison of the compactness of response events: (a) α and β events, (b) α and γ events, and (c) β and γ events.

    图 8  响应事件紧致度取整 (a) β事件 (b) γ事件

    Figure 8.  Rounded compactness of response events: (a) β events, (b) γ events.

    图 9  响应事件平均像素值对比 (a) α和β事件 (b) α和γ事件 (c) β和γ事件

    Figure 9.  Comparison of mean pixel values of response events: (a) α and β events, (b) α and γ events, and (c) β and γ events.

    图 10  响应事件甄别逻辑图

    Figure 10.  Flowchart of response event identification.

    表  1  实验样品参数

    Table  1.   Parameters of experimental samples

    实验样品参数
    传感器像素尺寸2.2 μm × 2.2 μm
    传感器分辨率2592 (水平) × 1944 (垂直)
    α 放射源活度2.9× 104 Bq (241Am)
    β 放射源活度7.4 × 107 Bq (63Ni)
    γ 放射源活度9 × 1014 Bq (60Co)
    下载: 导出CSV

    表  2  响应事件的甄别效果

    Table  2.   Identification performance of response events

    混合辐射场类型甄别事件总数准确率
    α/β10000> 99.9%
    α/γ10000> 99.9%
    β/γ10000> 82.5%
    下载: 导出CSV
  • [1] HADFIELD R H, LEACH J, FLEMING F, et al. Single-photon detection for long-range imaging and sensing[J]. Optica, 2023, 10(9): 1124-1141. doi: 10.1364/OPTICA.488853
    [2] DUTTON N A W, GYONGY I, PARMESAN L, et al. A SPAD-based QVGA image sensor for single-photon counting and quanta imaging[J]. IEEE Transactions on Electron Devices, 2016, 63(1): 189-196. doi: 10.1109/TED.2015.2464682
    [3] MADONINI F, SEVERINI F, ZAPPA F, et al. Single photon avalanche diode arrays for quantum imaging and microscopy[J]. Advanced Quantum Technologies, 2021, 4(7): 2100005. doi: 10.1002/qute.202100005
    [4] MA J J, ZHANG D X, ROBLEDO D, et al. Ultra-high-resolution quanta image sensor with reliable photon-number-resolving and high dynamic range capabilities[J]. Scientific Reports, 2022, 12(1): 13869. doi: 10.1038/s41598-022-17952-z
    [5] GUO X D, HE P, LV X J, et al. Material decomposition of spectral CT images via attention-based global convolutional generative adversarial network[J]. Nuclear Science and Techniques, 2023, 34(3): 45. doi: 10.1007/s41365-023-01184-5
    [6] YANG J ZH, LI M F, CHEN X X, et al. Single-photon quantum imaging via single-photon illumination[J]. Applied Physics Letters, 2020, 117(21): 214001. doi: 10.1063/5.0021214
    [7] CHENG Q Q, MA CH W, YUAN Y ZH, et al. X-ray detection based on complementary metal-oxide-semiconductor sensors[J]. Nuclear Science and Techniques, 2019, 30(1): 9. doi: 10.1007/s41365-018-0528-4
    [8] HE R, NIU X Y, WANG Y, et al. Advances in nuclear detection and readout techniques[J]. Nuclear Science and Techniques, 2023, 34(12): 205. doi: 10.1007/s41365-023-01359-0
    [9] CHAKRABORTY A, PARASHAR N, PANDEY D K, et al. Radiological complexity of nuclear facilities: an information complexity approach to workplace monitoring[J]. Journal of Radiological Protection, 2024, 44(2): 021511. doi: 10.1088/1361-6498/ad42a5
    [10] 罗智文, 冯婕, 郭旗, 等. 质子辐照下动态星敏感器质心定位[J]. 光学 精密工程, 2025, 33(13): 2089-2107.

    LUO ZH W, FENG J, GUO Q, et al. Centroid localization of dynamic star sensors under proton irradiation[J]. Optics and Precision Engineering, 2025, 33(13): 2089-2107. (in Chinese).
    [11] LUO D W, WU H Y, LI ZH H, et al. Performance of digital data acquisition system in gamma-ray spectroscopy[J]. Nuclear Science and Techniques, 2021, 32(8): 79. doi: 10.1007/s41365-021-00917-8
    [12] GU Z, PROUT D L, TASCHEREAU R, et al. A new pulse pileup rejection method based on position shift identification[J]. IEEE Transactions on Nuclear Science, 2016, 63(1): 22-29. doi: 10.1109/TNS.2015.2495169
    [13] LIU X H, LIU B Q, LIU M ZH, et al. An optimized SVR algorithm for pulse pile-up correction in pulse shape discrimination[J]. Sensors, 2024, 24(23): 7545. doi: 10.3390/s24237545
    [14] NEUBÜSER C, CORRADINO T, DALLA BETTA G F, et al. ARCADIA FD-MAPS: simulation, characterization and perspectives for high resolution timing applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1048: 167946. doi: 10.1016/j.nima.2022.167946
    [15] YOO S, PARK S, YUN S, et al. Impact of the fiber-optic faceplate on the imaging performance of a CMOS X-ray detector[J]. Journal of Instrumentation, 2024, 19(12): P12003. doi: 10.1088/1748-0221/19/12/P12003
    [16] ALMEIDA B D, AMARO F D, ANTONIETTI R, et al. Noise assessment of CMOS active pixel sensors for the CYGNO Experiment[J]. Measurement Science and Technology, 2023, 34(12): 125145. doi: 10.1088/1361-6501/acf7e1
    [17] 刘塔拉, 任同阳, 于勇, 等. 地基大型光学望远镜大靶面相机成像电路设计[J]. 光学 精密工程, 2025, 33(21): 3373-3382. doi: 10.37188/OPE.20253321.3373

    LIU T L, REN T Y, YU Y, et al. Design of imaging circuit for large-format camera of ground-based large optical telescope[J]. Optics and Precision Engineering, 2025, 33(21): 3373-3382. (in Chinese). doi: 10.37188/OPE.20253321.3373
    [18] ZHOU ZH, ZHOU SH Q, WANG D, et al. Low-noise and low-power pixel sensor chip for gas pixel detectors[J]. Nuclear Science and Techniques, 2024, 35(3): 58. doi: 10.1007/s41365-024-01418-0
    [19] LIU SH H, GAO C S, ZHANG X, et al. CMOS direct conversion X-ray detector coupled with fluorinated liquid[J]. Nuclear Science and Techniques, 2025, 36(1): 1. doi: 10.1007/s41365-024-01529-8
    [20] XU R, HSU C K, KALANI S, et al. Single-event upset responses of metal-oxide-metal capacitors and diodes used in bulk 65-nm CMOS analog circuits[J]. IEEE Transactions on Nuclear Science, 2020, 67(4): 698-707. doi: 10.1109/TNS.2020.2974229
    [21] HU M D, PADGETT F, MCCURDY M W, et al. Probing the single-event sensitivity of a COTS 3D-integrated imager with alpha particle irradiation[J]. IEEE Transactions on Nuclear Science, 2023, 70(4): 410-417. doi: 10.1109/TNS.2022.3222099
    [22] XU SH L, ZOU SH L, HAN Y C, et al. Study on the availability of 4T-APS as a video monitor and radiation detector in nuclear accidents[J]. Sustainability, 2018, 10(7): 2172. doi: 10.3390/su10072172
    [23] PÉREZ M, LIPOVETZKY J, HARO M S, et al. Particle detection and classification using commercial off the shelf CMOS image sensors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 827: 171-180. doi: 10.1016/j.nima.2016.04.072
    [24] BAR O, BIBRZYCKI Ł, NIEDŹWIECKI M, et al. Zernike moment based classification of cosmic ray candidate hits from CMOS sensors[J]. Sensors, 2021, 21(22): 7718. doi: 10.3390/s21227718
    [25] HARO M S, BESSIA F A, PÉREZ M, et al. Soft X-rays spectroscopy with a commercial CMOS image sensor at room temperature[J]. Radiation Physics and Chemistry, 2020, 167: 108354. doi: 10.1016/j.radphyschem.2019.108354
    [26] XUE Y Y, WANG Z J, MA W Y, et al. Comparison of displacement damage effects on the dark signal in CMOS image sensors induced by CSNS back-n and XAPR neutrons[J]. Nuclear Science and Techniques, 2024, 35(10): 169. doi: 10.1007/s41365-024-01513-2
    [27] LIU J, ZHOU ZH, WANG D, et al. Prototype of single-event effect localization system with CMOS pixel sensor[J]. Nuclear Science and Techniques, 2022, 33(11): 136. doi: 10.1007/s41365-022-01128-5
    [28] LIANG B, LIU J H, ZHANG X P, et al. Total ionizing dose effect modeling method for CMOS digital-integrated circuit[J]. Nuclear Science and Techniques, 2024, 35(2): 26. doi: 10.1007/s41365-024-01378-5
    [29] TIWARI M K, DIWAN J, SINGH S K, et al. Study of TID & dose rate effect of gamma radiation on COTS CMOS camera[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2025, 563: 165700. doi: 10.1016/j.nimb.2025.165700
    [30] 任同群, 曹润嘏, 张国锐, 等. 星敏感器CMOS电路板靶面自动装调系统[J]. 光学 精密工程, 2024, 32(16): 2513-2522.

    REN T Q, CAO R G, ZHANG G R, et al. Automatic assembly and adjustment system for target surface of CMOS circuit board of star sensor[J]. Optics and Precision Engineering, 2024, 32(16): 2513-2522.
    [31] YANG M Y, QIAN Y, PU T L, et al. Edims: an event-driven internal memory synchronized readout prototype ASIC chip developed for HFRS-TPC[J]. Nuclear Science and Techniques, 2023, 34(12): 196. doi: 10.1007/s41365-023-01341-w
    [32] INAGAKI Y, MATSUYA Y. A method for detecting timing of photodiode saturation without in-pixel TDC for high-dynamic-range CMOS image sensor[J]. IEICE Transactions on Electronics, 2021, E104. C(10): 607-616.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-22
  • 录用日期:  2025-12-25
  • 网络出版日期:  2026-02-09

目录

    /

    返回文章
    返回