留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向热敏感基底的低温高性能镀膜工艺研发

林柏竹 叶明

林柏竹, 叶明. 面向热敏感基底的低温高性能镀膜工艺研发[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0139
引用本文: 林柏竹, 叶明. 面向热敏感基底的低温高性能镀膜工艺研发[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0139
LIN Bai-zhu, YE Ming. Development of a Low-Temperature, High-Performance Coating Process for Heat-Sensitive Substrates[J]. Chinese Optics. doi: 10.37188/CO.2025-0139
Citation: LIN Bai-zhu, YE Ming. Development of a Low-Temperature, High-Performance Coating Process for Heat-Sensitive Substrates[J]. Chinese Optics. doi: 10.37188/CO.2025-0139

面向热敏感基底的低温高性能镀膜工艺研发

cstr: 32171.14.CO.2025-0139
基金项目: 智能轻型超大幅宽高分辨遥感卫星及数据处理技术(No. 2025JLGJ0013GX);长光卫星技术股份有限公司光学镀膜均匀性修正程序开发项目(No. ZYGCAFKY02024101002)
详细信息
    作者简介:

    林柏竹(1994—),女,吉林长春人,博士,工程师,2022年于吉林大学获得博士学位,现为长光卫星技术股份有限公司光学加工技术研究室员工,主要从事光学薄膜的设计、研制和空间应用方面的研究工作。E-mail:linbaizhu@jl1.cn

  • 中图分类号: TP394.1;TH691.9

Development of a Low-Temperature, High-Performance Coating Process for Heat-Sensitive Substrates

Funds: Supported by Intelligent Lightweight Ultra-Wide Swath High-Resolution Remote Sensing Satellite and Data Processing Technology (No. 2025JLGJ0013GX); Chang Guang Satellite Technology Co., Ltd. Optical Coating Uniformity Correction Procedure Development Project (No. ZYGCAFKY02024101002)
  • 摘要:

    针对热敏感基底(如环氧胶粘接结构件)在镀膜过程中的温升控制难题,本文提出一种低温电子束蒸发镀膜工艺。通过分段沉积-冷却循环的动态热管理策略,系统研究了该工艺在金属反射膜(以银膜为研究对象)的应力、附着力及光学等核心性能方面的表现,并结合环氧胶热失效阈值优化沉积流程。实验结果表明,在基片温度严格受控的条件下,该工艺使得反射膜残余应力显著降低,界面附着力满足国家标准中最严苛的03严酷等级(GB/T 26332.4-2015/ISO 9211-4:2012),可见光波段平均反射率与传统连续镀膜工艺相当(>99%@450−900 nm),且基片温升始终低于环氧胶临界阈值。通过离子辅助沉积与介质层封装协同作用,银膜抗氧化性与环境耐受性显著提升,满足航天光学器件在极端多物理场耦合环境下的长寿命服役要求。进一步理论分析表明,该工艺的热弛豫机制与结构调控原理具备跨场景适用性,为低温敏感基材的高性能镀膜提供了兼顾航天可靠性及工业普适性的创新解决方案。

     

  • 图 1  初始温度分别为(a)22 °C和(b)30 °C下的表面应力云图

    Figure 1.  Contour plots of surface stress at initial temperatures of (a) 22 °C and (b) 30 °C

    图 2  连续镀膜过程实时温度监测曲线

    Figure 2.  Real-time temperature monitoring curve of the continuous coating process

    图 3  单层介质膜镀膜实时温升曲线:(a)SiO2和(b)TiO2的温升-厚度关系

    Figure 3.  Real-time temperature rise as a function of film thickness during the deposition of single-layer dielectric films: (a) SiO2 and (b) TiO2

    图 4  薄膜内部结构:(a)SiO2薄膜和(b)TiO2薄膜

    Figure 4.  Internal structure of thin films: (a) SiO2 and (b) TiO2

    图 5  膜层牢固度检测:(a)SiO2薄膜和(b)TiO2薄膜

    Figure 5.  Adhesion strength test of the film layers: (a) SiO2 and (b) TiO2 thin films

    图 6  理论设计/实际镀制反射光谱对比图

    Figure 6.  Comparison between the theoretically designed and experimentally deposited reflective spectra

    图 7  分段控温镀膜过程实时温度监测曲线

    Figure 7.  Real-time temperature monitoring curve for the film deposition process under segmented temperature control

    图 8  镀膜前后基片曲率测量:(a)连续和(b)分段镀膜工艺

    Figure 8.  Substrate curvature measurements before and after film deposition: (a) continuous and (b) multi-step deposition processes

    图 9  胶粘试验装置图

    Figure 9.  Schematic of the adhesion test apparatus

    图 10  分段/连续工艺下反射光谱对比图

    Figure 10.  Comparison of the reflective spectra under segmented and continuous thin-film deposition processes

    图 11  各阶段膜层表面形貌:(a)试验前;(b)第一阶段试验后;(c)第二阶段试验后

    Figure 11.  Surface morphology of the film at different stages: (a) before the test; (b) after the first stage of the test; (c) after the second stage of the test

    图 12  原子氧试验前后反射光谱对比曲线

    Figure 12.  Comparison of the reflective spectra before and after atomic oxygen exposure tests

    表  1  多物理场耦合环境模拟试验前后光谱变化和膜层情况汇总

    Table  1.   Summary of spectral changes and film condition before and after the multi-physics coupled environment simulation test

    连续镀膜工艺(样品
    编号:1#、2#、3#、4#)
    分段控温镀膜工艺
    (样品编号:5#、6#、7#、8#)
    ΔR̄ 脱膜情况 ΔR̄ 脱膜情况
    高低温循环实验 0.11% 0.08%
    振动实验 0.08% 0.04%
    恒定高温试验 0.11% 0.10%
    温湿度试验 0.12% 0.12%
    下载: 导出CSV
  • [1] CÔTÉ P, DESNOYERS N. Thermal stress failure criteria for a structural epoxy[J]. Proceedings of the SPIE, 2011, 8125: 81250K. doi: 10.1117/12.893832
    [2] https://multimedia.3m.com/mws/media/594118O/3m-scotch-weld-epoxy-adhesive-ec-2216-b-a.pdf?&fn=EC-2216BA.pdf..
    [3] 沈凯. 低温冷光学反射镜的支撑技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    SHEN K. Research on support technology of cryogenic optical mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese).
    [4] 李晓雪, 黄玲程, 郝永芹. 离子束辅助电子束蒸镀H4膜工艺及其抗激光损伤特性研究[J]. 激光与光电子学进展, 2022, 59(19): 1931001. doi: 10.3788/LOP202259.1931001

    LI X X, HUANG L CH, HAO Y Q. Preparing H4 films and their laser damage resistance deposited using ion-beam-assisted electron beam evaporation[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1931001. (in Chinese). doi: 10.3788/LOP202259.1931001
    [5] 王英剑, 李庆国, 范正修. 电子束、离子辅助和离子束溅射三种工艺对光学薄膜性能的影响[J]. 强激光与粒子束, 2003, 15(9): 841-844.

    WANG Y J, LI Q G, FAN ZH X. Property comparison of optical thin films prepared by E-beam, ion assisted deposition and ion beam sputtering[J]. High Power Laser and Particle Beams, 2003, 15(9): 841-844. (in Chinese).
    [6] 李兆营. 蒸发速率对硅衬底电子束蒸发钛薄膜性能的影响[J]. 电镀与涂饰, 2023, 42(1): 31-34. doi: 10.19289/j.1004-227x.2023.01.006

    LI ZH Y. Effect of evaporation rate on properties of Ti film prepared by electron beam evaporation on silicon wafer[J]. Electroplating & Finishing, 2023, 42(1): 31-34. (in Chinese). doi: 10.19289/j.1004-227x.2023.01.006
    [7] 唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.

    TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M]. Hangzhou: Zhejiang University Press, 2006. (in Chinese).
    [8] 任翼. 真空辅助镀膜离子源的设计及其对沉积膜层影响的研究[D]. 杭州: 中国计量大学, 2024.

    REN Y. Design of auxiliary ion source for vacuum coating and research of its influence on deposited film[D]. Hangzhou: China Jiliang University, 2024. (in Chinese).
    [9] 荆建行. 离子束辅助低损耗TiO2光学薄膜研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021.

    JING J X. Study on lon assisted deposition low loss TiO2 optical thin film[D]. Chengdu: The Institute of Optics and Electronics, The Chinese Academy of Sciences, 2021. (in Chinese).
    [10] 张大伟, 黄元申, 贺洪波, 等. 阶段离子束辅助法制备基频减反膜[J]. 光学 精密工程, 2007, 15(10): 1463-1468. doi: 10.3321/j.issn:1004-924x.2007.10.001

    ZHANG D W, HUANG Y SH, HE H B, et al. Antireflective film prepared by periodic ion beam assisted deposition[J]. Optics and Precision Engineering, 2007, 15(10): 1463-1468. (in Chinese). doi: 10.3321/j.issn:1004-924x.2007.10.001
    [11] 田晓习. 光学薄膜技术中的基片与薄膜热力学匹配问题研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.

    TIAN X X. Study on thermodynamic matching between substrate and films in optical thin film technology[D]. Chengdu: Institute of Optics and Electronics Chinese Academy of Science, 2020. (in Chinese).
    [12] 李波, 王超, 闫涛, 等. 多层高反膜的应力研究[J]. 真空与低温, 2023, 29(2): 146-152. doi: 10.3969/j.issn.1006-7086.2023.02.007

    LI B, WANG CH, YAN T, et al. Stress study of multi-layer high reflection films[J]. Vacuum and Cryogenics, 2023, 29(2): 146-152. (in Chinese). doi: 10.3969/j.issn.1006-7086.2023.02.007
    [13] 李阳, 徐均琪, 刘政, 等. 残余应力对介质高反膜面型影响的研究[J]. 真空科学与技术学报, 2021, 41(5): 484-490. doi: 10.13922/j.cnki.cjvst.202009001

    LI Y, XU J Q, LIU ZH, et al. Study on the influence of residual stress on dielectric high reflection films[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(5): 484-490. (in Chinese). doi: 10.13922/j.cnki.cjvst.202009001
    [14] 樊彦峥. 大口径镜面高反射膜制备及面形控制技术[D]. 西安: 西安工业大学, 2021.

    FAN Y ZH. Deposition and surface shape control technology of large-aperture mirror high-reflection film[D]. Xian: Xi'an Technological University, 2021. (in Chinese).
    [15] 王振宇. 利用PEALD/MLD技术实现柔性有机电致发光器件的有机无机杂化薄膜封装[D]. 长春: 吉林大学, 2023.

    WANG ZH Y. Organic-inorganic hybrid film encapsulation of flexible organic light emitting diodes by PEALD/MLD technology[D]. Changchun: Jilin University, 2023. (in Chinese).
    [16] WANG ZH Y, CHEN Z Q, WANG J T, et al. Realization of an autonomously controllable process for atomic layer deposition and its encapsulation application in flexible organic light-emitting diodes[J]. Optics Express, 2023, 31(13): 21672-21688. doi: 10.1364/OE.488152
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2026-02-10

目录

    /

    返回文章
    返回