-
摘要:目的
针对传统中阶梯光栅光谱仪高分辨率与微型化难以兼容的技术难题,本文提出了一种紧凑型中阶梯光栅光谱仪的设计方法。
方法该设计基于交叉Czerny-Turner型光路结构,采用透射棱镜作为交叉色散元件,通过正交色散分离不同级次光谱的同时结合反向离轴抛物面聚焦镜消除棱镜引入的像差,以实现空间布局小型化。本文对中阶梯光栅及色散棱镜参数进行设计建模,并由光程像差理论分析了聚焦光路的像差特性。
结果仿真结果表明,抛物面-棱镜型中阶梯光栅光谱仪光谱范围为450~650 nm,数值孔径为0.05,分辨率可达0.06 nm,并且在公差范围合理情况下,系统体积仅有80 mm×44 mm×18 mm。
结论基本能够满足便携式、高精度光谱检测的使用要求。
Abstract:ObjectiveAiming at the technical challenge that high resolution and miniaturization are difficult to be reconciled in traditional echelle spectrometers, this paper presents a novel optical design for a compact echelle spectrometer.
MethodFirst, based on the crossed Czerny-Turner structure, the design adopts a transmission prism as the cross-dispersing element to separate spectra of different orders and a reverse off-axis parabolic focusing mirror mainly for eliminating the aberrations introduced by the prism, thereby realizing the miniaturization of the spatial layout. In this paper, we briefly describe the design methods of echelle gratings and dispersive prisms. Additionally, the aberration characteristics of the focusing optical path is analyzed through the theory of optical path aberration.
ResultThe simulation results show that the parabolic-prism type echelle spectrometer has a spectral range of 450~650 nm, a numerical aperture of 0.05, and a resolution up to 0.06 nm. Moreover, under the condition of reasonable tolerance range, the system volume is only 80 mm × 44 mm × 18 mm.
ConclusionIt can satisfy the application requirements of portable and high-precision spectral detection.
-
Key words:
- echelle grating /
- crossed Czerny-Turner structure /
- off-axis parabolic /
- optical design
-
表 1 光谱仪的设计参数
Table 1. Parameters of the designed spectrometer.
系统参数 数值 数值孔径 0.05 入射狭缝 15 μm×50 μm 光谱范围 450 nm ~ 650 nm 光谱级次 35th ~ 49th 准直镜 R= 140 mm, θ = 5° 聚焦镜 R= 150 mm, θ = 16.7° 中阶梯光栅 79 gr/mm, $ {\theta }_{B} $= 63.5°, γ = 7° 色散棱镜 Glass:H-ZF3, α =16° 表 2 系统公差设置明细
Table 2. Setting details of system tolerance
公差类型 参数 表面不规则度 ±0.2光圈 曲率半径 ±2光圈 元件/表面偏心 ±0.05 mm 元件/表面倾斜 ±0.05 mm 厚度 ±0.1 mm 折射率 0.001 表 3 对光学性能影响最大的公差项
Table 3. Tolerances with greatest effect on optical performance
类型 表面 评价函数下降 表面不规则度 准直镜 4.9% 元件倾斜/X 离轴抛物镜 3.82% 表面倾斜/X 离轴抛物镜 3.81% 曲率半径 准直镜 2.59% 元件偏心/Y 准直镜 2.56% -
[1] YAN C S, CHEN Y W, YANG H M, et al. Optical spectrum analyzers and typical applications in astronomy and remote sensing[J]. Review of Scientific Instruments, 2023, 94(8): 081501. doi: 10.1063/5.0138963 [2] ZHU CH X, FU X P, ZHANG J Y, et al. Review of portable near infrared spectrometers: current status and new techniques[J]. Journal of Near Infrared Spectroscopy, 2022, 30(2): 51-66. doi: 10.1177/09670335211030617 [3] YAN H, DE GEA NEVES M, NODA I, et al. Handheld near-infrared spectroscopy: state-of-the-art instrumentation and applications in material identification, food authentication, and environmental investigations[J]. Chemosensors, 2023, 11(5): 272. doi: 10.3390/chemosensors11050272 [4] 曹海霞, 赵英飞, 何淼, 等. 小型分段式高分辨率中阶梯光栅光谱仪的设计[J]. 光学学报, 2018, 38(11): 1105002. doi: 10.3788/AOS201838.1105002CAO H X, ZHAO Y F, HE M, et al. Design of small-size high resolution echelle grating spectrometer with divided spectral coverage[J]. Acta Optica Sinica, 2018, 38(11): 1105002. (in Chinese). doi: 10.3788/AOS201838.1105002 [5] BARNARD T W, CROCKETT M I, IVALDI J C, et al. Design and evaluation of an echelle grating optical system for ICP-OES[J]. Analytical Chemistry, 1993, 65(9): 1225-1230. doi: 10.1021/ac00057a020 [6] UNNIKRISHNAN V K, ALTI K, NAYAK R, et al. Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis[J]. Journal of Instrumentation, 2010, 5(4): P04005. [7] ZHANG R, REN W Y, WANG H, et al. Raman spectroscopic detection using a two-dimensional echelle spectrometer[J]. Optoelectronics Letters, 2021, 17(11): 641-645. doi: 10.1007/s11801-021-1065-7 [8] XIN Y, ZHANG Q, SONG W W, et al. Application of high time-resolution echelle spectrometer in transient spectral testing of energetic materials[J]. Proceedings of SPIE, 2025, 13544: 135440K. doi: 10.1117/12.3058129 [9] ACEITUNO J, SÁNCHEZ S F, GRUPP F, et al. CAFE: Calar alto fiber-fed echelle spectrograph[J]. Astronomy & Astrophysics, 2013, 552(1): A31. doi: 10.1051/0004-6361/201220361 [10] ZHOU Y D, YIN L, SUN Y A, et al. A uniform dispersion design method for echelle spectrometer[J]. Optics Communications, 2025, 582: 131657. (查阅网上资料, 未能确认标绿作者信息, 请确认). [11] FU X, DUAN F J, JIANG J J, et al. Optical design of a broadband spectrometer with compact structure based on echelle and concave gratings[J]. Optics and Lasers in Engineering, 2022, 151: 106926. doi: 10.1016/j.optlaseng.2021.106926 [12] KRAUS M, HÖNLE T, FÖRSTER E, et al. Compact double-pass echelle spectrometer employing a crossed diffraction grating[J]. Optics Express, 2022, 30(17): 31336-31353. doi: 10.1364/OE.465208 [13] THOMAE D, HÖNLE T, KRAUS M, et al. Compact echelle spectrometer employing a cross-grating[J]. Applied Optics, 2018, 57(25): 7109-7116. doi: 10.1364/AO.57.007109 [14] BAGUSAT V, KRAUS M, FÖRSTER E, et al. Concept and optical design of a compact cross-grating spectrometer[J]. Journal of the Optical Society of America A, 2019, 36(3): 345-352. doi: 10.1364/JOSAA.36.000345 [15] 陈少杰. 宽波段叶阶梯光栅光谱仪设计与标定方法研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2013.CHEN SH J. Method for wide spectral coverage echelle spectrograph design and clibration[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2013. (in Chinese). [16] SCHROEDER D J. Astronomical Optics[M]. New York: Academic Press, 2000. [17] CHEN T A, TANG Y, ZHANG L J, et al. Correction of astigmatism and coma using analytic theory of aberrations in imaging spectrometer based on concentric off-axis dual reflector system[J]. Applied Optics, 2014, 53(4): 565-576. doi: 10.1364/AO.53.000565 [18] HOWARD J W. Formulas for the coma and astigmatism of wedge prisms used in converging light[J]. Applied Optics, 1985, 24(23): 4265-4268. doi: 10.1364/AO.24.004265 [19] CHANG S, PRATA A. Geometrical theory of aberrations near the axis in classical off-axis reflecting telescopes[J]. Journal of the Optical Society of America A, 2005, 22(11): 2454-2464. doi: 10.1364/JOSAA.22.002454 [20] EVERSBERG T, VOLLMANN K. Fundamentals of echelle spectroscopy[M]//EVERSBERG T, VOLLMANN K. Spectroscopic Instrumentation. Berlin, Heidelberg: Springer, 2014: 193-227. -
下载: