留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微区域角分辨光谱测量系统

吴祖伟 高云 朱鹏飞 章文卓 王磊

吴祖伟, 高云, 朱鹏飞, 章文卓, 王磊. 微区域角分辨光谱测量系统[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0148
引用本文: 吴祖伟, 高云, 朱鹏飞, 章文卓, 王磊. 微区域角分辨光谱测量系统[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0148
WU Zu-wei, GAO Yun, ZHU Peng-fei, ZHANG Wen-zhuo, WANG Lei. Micro-Area Angle-Resolved Spectroscopy Measurement System[J]. Chinese Optics. doi: 10.37188/CO.2025-0148
Citation: WU Zu-wei, GAO Yun, ZHU Peng-fei, ZHANG Wen-zhuo, WANG Lei. Micro-Area Angle-Resolved Spectroscopy Measurement System[J]. Chinese Optics. doi: 10.37188/CO.2025-0148

微区域角分辨光谱测量系统

cstr: 32171.14.CO.2025-0148
基金项目: 福建省中青年教师教育科研项目(科技类)(No. JAT241360);安徽省教育厅青年科学项目(No. 2025AHGXZK40354);厦门市产学研项目(No. 2024CXY0110)
详细信息
    作者简介:

    吴祖伟(1997—),男,福建泉州人,助教,2024年于厦门大学获得硕士学位,主要从事机器视觉与光学测量方面的研究。E-mail:wuzuwei97@126.com

    章文卓(2000—),女,福建三明人,助教,2024年于厦门大学获得硕士学位,主要从事机器视觉与数字电路方面的研究。E-mail:zhangwzxmu@163.com

    王 磊(1977—),男,安徽合肥人,教授,博士生导师,2007年于合肥工业大学获得博士学位,主要从事机器视觉、智能制造、图像处理和光谱仪器方面的研究。E-mail:wanglei33@xmu.edu.cn

  • 中图分类号: O433.1

Micro-Area Angle-Resolved Spectroscopy Measurement System

Funds: Supported by Fujian Province Young and Middle-Aged Teachers Education Research Project (Science and Technology) (No. JAT241360); Youth Scientific Research Project (Natural Science) of the Education Department of Anhui Province (No. 2025AHGXZK40354); Xiamen Industry-University-Research Project (No. 2024CXY0110)
More Information
  • 摘要:

    为满足表面等离激元纳米结构的微区域光学响应研究需求,本文研制了一套基于同轴转臂的微区域角分辨光谱测量系统。该系统设计了一种基于有限共轭构型的微区域远程激发与收集光路模型,实现了以32 μm直径的微区域光斑入射;搭建了基于同轴转臂的角分辨机械系统,实现了6.9° 至90° 的大范围定向角度激发。性能测试表明,系统稳定性高,最小角度分辨率达0.12°。通过对一维光栅和二维周期纳米结构的反射光谱采集实验,进一步验证了系统的可靠性,证明了微区域光斑所带来的优势,为微纳结构的角分辨光谱表征提供了有效的技术手段。

     

  • 图 1  微区域有限共轭光路模型示意图

    Figure 1.  Schematic of a finite-conjugate optical path model for a micro-area

    图 2  系统的光路模型

    Figure 2.  Optical path model of the proposed system

    图 3  光斑测量:(a)光学系统实物;(b)图像采集模块;(c)数字图像处理过程

    Figure 3.  Experimental spot measurement: (a) Optical system; (b) Image acquisition module; (c) Digital image processing workflow

    图 4  机械系统:(a)转臂、旋转与传动模块;(b)调节模块;(c)样品台模块;(d)校准模块;(e)系统实物图

    Figure 4.  Mechanical system: (a) Rotating arm, rotation and transmission module; (b) Adjustment module; (c) Sample stage module; (d) Calibration module; (e) System photograph

    图 5  系统框架:(a)各模块功能框架;(b)人机操作界面

    Figure 5.  System Framework: (a) Functional framework of each module; (b) Human-machine interface

    图 6  光功率测试模块:(a)光源稳定性测试模块;(b)信号收集稳定性测试模块

    Figure 6.  Optical power testing module: (a) Light source stability testing module; (b) Signal collection stability testing module

    图 7  系统的稳定性测试结果:(a)光源稳定性;(b)信号收集稳定性

    Figure 7.  Stability test results of the system: (a) Light source stability; (b) Signal collection stability

    图 8  角分辨率测试:(a)理论模型;(b)测试模块;(c)CV曲线

    Figure 8.  Angular resolution testing: (a) Theoretical model; (b) Testing module; (c) CV curve

    图 9  一维光栅实验:(a)银表面一维光栅角分辨光谱图;(b)银表面一维光栅角分辨强度图;(c)银表面一维光栅理论数值模拟结果;(d)金表面一维光栅角分辨光谱图;(e)金表面一维光栅角分辨强度图;(f)金表面一维光栅理论数值模拟结果

    Figure 9.  One-dimensional grating experiments: (a) Angle-resolved spectra on silver; (b) Angle-resolved intensity on silver; (c) Theoretical numerical simulation results on silver; (d) Angle-resolved spectra on gold; (e) Angle-resolved intensity on gold; (f) Theoretical numerical simulation results on gold

    图 10  反射光谱测量结果:(a)本系统测量结果;(b)椭偏仪测量结果;(c) FWHM的变化曲线

    Figure 10.  Reflectance spectrum measurement results: (a) Measurement results of the proposed system; (b) Measurement results of the ellipsometer; (c) FWHM variation curve

    表  1  光学系统型号表

    Table  1.   Optical system specifications

    Items Designation
    Light source HDL-II
    Fiber for excitation 50 μm silica fiber
    Fiber for collection 1000 μm silica fiber
    Collimator F239SMA-A
    Polarizer HC12N
    Achromatic doublet lens 63-718
    Objective lens InfiniStix
    Spectrometer Andor Shamrock 303i
    下载: 导出CSV

    表  2  点列图数据

    Table  2.   Spot diagram data

    视场 RMS Radius/μm GEO Radius/μm
    13.556 29.153
    0.707° 13.566 30.743
    13.578 31.582
    下载: 导出CSV
  • [1] ITOH T, PROCHÁZKA M, DONG ZH CH, et al. Toward a new era of SERS and TERS at the nanometer scale: from fundamentals to innovative applications[J]. Chemical Reviews, 2023, 123(4): 1552-1634. doi: 10.1021/acs.chemrev.2c00316
    [2] MINAMIMOTO H, MURAKOSHI K. Surface-enhanced Raman scattering as a probe for exotic electronic excitations induced by localized surface plasmons[J]. Current Opinion in Electrochemistry, 2020, 22: 186-194. doi: 10.1016/j.coelec.2020.07.005
    [3] 葛梅兰, 王与烨, 李海滨, 等. 拉曼光谱技术在脑胶质瘤检测中的应用研究[J]. 中国光学(中英文), 2024, 17(5): 995-1013. doi: 10.37188/CO.2024-0003

    GE M L, WANG Y Y, LI H B, et al. Application of Raman spectroscopy in the detection of brain glioma[J]. Chinese Optics, 2024, 17(5): 995-1013. (in Chinese). doi: 10.37188/CO.2024-0003
    [4] 陈韶云, 张行颖, 刘奔, 等. 表面增强拉曼光谱基底的种类及其应用进展[J]. 分析化学, 2024, 52(7): 910-924.

    CHEN SH Y, ZHANG X Y, LIU B, et al. Classification and application of surface-enhanced Raman spectroscopy substrates[J]. Chinese Journal of Analytical Chemistry, 2024, 52(7): 910-924. (in Chinese).
    [5] 林海丹, 宋程程, 穆铭, 等. 基于苯并三唑功能化银/泡沫镍基底的表面增强拉曼光谱谱峰偏移策略检测痕量铜离子[J]. 分析化学, 2025, 53(9): 1566-1575.

    LIN H D, SONG CH CH, MU M, et al. Detection of trace copper ions on benzotriazole functionalized Silver/Nickel foam based on surface-enhanced Raman scattering peak shifting strategy[J]. Chinese Journal of Analytical Chemistry, 2025, 53(9): 1566-1575. (in Chinese).
    [6] MENG ZH D, TIAN ZH Q, YI J. Rapid theoretical method for inverse design on a tip-enhanced Raman spectroscopy (TERS) probe[J]. Optics Express, 2023, 31(10): 15474-15483. doi: 10.1364/OE.488322
    [7] VERMA P. Tip-enhanced Raman spectroscopy: technique and recent advances[J]. Chemical Reviews, 2017, 117(9): 6447-6466. doi: 10.1021/acs.chemrev.6b00821
    [8] SINEV I, KOMISSARENKO F, IORSH I, et al. Steering of guided light with dielectric nanoantennas[J]. ACS Photonics, 2020, 7(3): 680-686. doi: 10.1021/acsphotonics.9b01515
    [9] 王晓坤, 李周, 梁国龙. 基于金属-介质-金属的可调谐窄带完美吸收的研究[J]. 中国光学(中英文), 2024, 17(2): 263-270. doi: 10.37188/CO.2023-0125

    WANG X K, LI ZH, LIANG G L. Tunable narrow-band perfect absorber based on metal-dielectric-metal[J]. Chinese Optics, 2024, 17(2): 263-270. (in Chinese). doi: 10.37188/CO.2023-0125
    [10] HUO ZH CH, CHEN B, WANG ZH, et al. Enhanced plasmonic scattering imaging via deep learning-based super-resolution reconstruction for exosome imaging[J]. Analytical and Bioanalytical Chemistry, 2024, 416(29): 6773-6787. doi: 10.1007/s00216-024-05550-z
    [11] PHILIP A, KUMAR A R. The performance enhancement of surface Plasmon resonance optical sensors using nanomaterials: a review[J]. Coordination Chemistry Reviews, 2022, 458: 214424. doi: 10.1016/j.ccr.2022.214424
    [12] YAN S, MA H, BAO Y F, et al. Optical responses of metallic plasmonic arrays under the localized excitation[J]. Nano Research, 2024, 17(3): 1571-1577. doi: 10.1007/s12274-023-5927-0
    [13] CRUT A, MAIOLI P, DEL FATTI N, et al. Optical absorption and scattering spectroscopies of single nano-objects[J]. Chemical Society Reviews, 2014, 43(11): 3921-3956. doi: 10.1039/c3cs60367a
    [14] LIU Z W, WU J N, CAI CH, et al. Flexible hyperspectral surface Plasmon resonance microscopy[J]. Nature Communications, 2022, 13(1): 6475. doi: 10.1038/s41467-022-34196-7
    [15] TU SH H, RUAN D G, TZENG S D, et al. Optical properties of InGaN/GaN multiquantum wells light-emitting diode with one-dimensional au nanoparticle grating[J]. Journal of Nanophotonics, 2014, 8(1): 84097. doi: 10.1117/1.JNP.8.084097
    [16] MEYER S A, AUGUIÉ B, LE RU E C, et al. Combined SPR and SERS microscopy in the kretschmann configuration[J]. The Journal of Physical Chemistry A, 2012, 116(3): 1000-1007. doi: 10.1021/jp2107507
    [17] SHEGAI T, MILJKOVIC V D, BAO K, et al. Unidirectional broadband light emission from supported plasmonic nanowires[J]. Nano Letters, 2011, 11(2): 706-711. doi: 10.1021/nl103834y
    [18] DOMINGUEZ D, ALHUSAIN M, ALHARBI N, et al. Fourier plane imaging microscopy for detection of plasmonic crystals with periods beyond the optical diffraction limit[J]. Plasmonics, 2015, 10(6): 1337-1344. doi: 10.1007/s11468-015-9938-x
    [19] 胡鹏涛, 高若谦, 葛明锋, 等. 流动相单分子免疫检测系统的设计[J]. 中国光学(中英文), 2025, 18(5): 1055-1065.

    HU P T, GAO R Q, GE M F, et al. Design of flow-phase single-molecule immunoassay detection system[J]. Chinese Optics, 2025, 18(5): 1055-1065. (in Chinese).
    [20] ORDAL M A, BELL R J, ALEXANDER R W, et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 1985, 24(24): 4493-4499. doi: 10.1364/AO.24.004493
    [21] 赵小龙, 常旭艳, 刘艳莉, 等. 基于非连通金属-介质-金属波导耦合D形谐振腔的多法诺共振传感器(英文)[J]. 中国光学(中英文), 2025, 18(6): 1484-1494. (查阅网上资料, 本条文献为英文文献, 请确认)

    ZHAO X L, CHANG X Y, LIU Y L, et al. Multi-Fano resonances sensing based on a non-through metal-insulator-metal waveguide coupling D-shaped cavity[J]. Chinese Optics, 2025, 18(6): 1484-1494.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-28
  • 录用日期:  2026-01-15
  • 网络出版日期:  2026-02-10

目录

    /

    返回文章
    返回