留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DnCNN-RM: an adaptive SAR image denoising algorithm based on residual networks

OU Hai-ning LI Chang-di ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng

欧海宁, 李长頔, 曾瑞彬, 吴言枫, 刘佳宁, 程鹏. DnCNN-RM:基于残差网络的自适应合成孔径雷达图像去噪算法[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0028
引用本文: 欧海宁, 李长頔, 曾瑞彬, 吴言枫, 刘佳宁, 程鹏. DnCNN-RM:基于残差网络的自适应合成孔径雷达图像去噪算法[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0028
OU Hai-ning, LI Chang-di, ZENG Rui-bin, WU Yan-feng, LIU Jia-ning, CHENG Peng. DnCNN-RM: an adaptive SAR image denoising algorithm based on residual networks[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0028
Citation: OU Hai-ning, LI Chang-di, ZENG Rui-bin, WU Yan-feng, LIU Jia-ning, CHENG Peng. DnCNN-RM: an adaptive SAR image denoising algorithm based on residual networks[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0028

DnCNN-RM:基于残差网络的自适应合成孔径雷达图像去噪算法

DnCNN-RM: an adaptive SAR image denoising algorithm based on residual networks

doi: 10.37188/CO.EN-2024-0028
More Information
    Author Bio:

    欧海宁(1979—),男,福建省莆田人,本科学士,2002年于华侨大学获得学士学位。现就职于湄洲湾职业技术学院,主要从事自动化与机器视觉研究。E-mail:mzyxqb@126.com

    曾瑞彬(1994—),男,福建宁德人,硕士研究生,2023年于中国科学院大学获得硕士学位。现就职于湄洲湾职业技术学院,主要从事人工智能研究。E-mail:zengruibin19@mails.ucas.ac.cn

    Corresponding author: zengruibin19@mails.ucas.ac.cn
  • 摘要:

    在图像处理领域,合成孔径雷达(SAR)图像的分析由于其广泛的应用而具有重要意义。然而,这些图像常常受到相干斑噪声的干扰,显著降低了图像质量。传统的去噪方法,通常基于滤波器技术,往往存在效率低下和适应性差的局限性。为了克服这些不足,本文提出了一种基于增强残差网络架构的SAR图像去噪算法,旨在提升SAR图像在复杂电磁环境中的应用效果。该算法结合了残差网络模块,直接对含噪输入图像进行处理,生成去噪输出。这种方法不仅有效降低了计算复杂度,还缓解了模型训练过程中遇到的困难。通过将Transformer模块与残差块结合,该算法提高了网络对全局特征的提取能力,相较于基于卷积神经网络(CNN)的残差模块,具有更强的特征提取能力。此外,算法引入了自适应激活函数Meta-ACON,能够动态调整神经元的激活模式,从而进一步提升了网络在特征提取上的效率。通过在RSOD数据集上的实验证明,所提出的去噪方法在EPI、SSIM和ENL等指标上表现出色,同时在PSNR方面也取得了显著的提升。与传统的去噪算法及深度学习算法相比,该算法的PSNR性能提高了两倍以上。进一步在MSTAR SAR数据集上的测试,得到了PSNR值为25.2021,验证了该算法在SAR去噪领域的良好泛化性。这些结果表明,所提出的算法s不仅能够有效降低相干斑噪声,还能有效保留SAR图像中的关键信息特征,从而在实际应用中显著提高图像质量和可用性。

     

  • Figure 1.  Residual unit module structure diagram

    Figure 2.  Schematic diagram of Meta-ACON in non-linear and linear switching

    Figure 3.  Structure of the neural network for learning the switching factor

    Figure 4.  DnCNN-RM network structure diagram

    Figure 5.  The denoising results of SAR1 by different denoising algorithms

    Figure 6.  The denoising results of SAR2 by different denoising algorithms

    Table  1.   Denoising results of SAR1 by different SAR image denoising algorithms

    MethodMeanStdPNSREPISSIMENL
    Lee118.4413.7314.740.9870.9960.999
    Frost115.3210.7412.490.8330.9790.999
    SAR-BM3D292.8417.1151.740.9920.9920.999
    DnCNN607.7625.3822.561.0000.9880.999
    DnCNN-RM697.1225.2259.0111.0000.9990.999
    下载: 导出CSV

    Table  2.   Denoising results of SAR2 by different SAR image denoising algorithms

    MethodMeanStdPNSREPISSIMENL
    Lee556.7323.3818.380.9890.9950.999
    Frost409.8220.2424.550.7350.9780.999
    SAR-BM3D595.9524.4121.451.0000.9970.999
    DnCNN1180.4934.3623.401.0000.9870.999
    DnCNN-RM1150.2635.6539.780.9990.9990.999
    下载: 导出CSV

    Table  3.   Denoising results of various denoising algorithms in ablation study

    MethodPSNR
    DnCNN15.5135
    DnCNN+ ResNet Block (CNN)24.5698
    DnCNN + ResNet Block (Transformer)24.8080
    DnCNN + Meta-ACON24.5833
    DnCNN+ ResNet Block (CNN) + Meta-ACON24.5888
    DnCNN + ResNet Block (Transformer) + Meta-ACON25.2021
    下载: 导出CSV

    Table  4.   Comparison results of SAR image denoising with different algorithms

    MethodWang et al.[14]Zhang et al.[15]Wang[16]Ours
    PSNR22.722.4422.9025.201
    SSIM0.7090.9000.9090.951
    下载: 导出CSV
  • [1] THEODOSIOU A, LÓPEZ-DEKKER P. On the sensitivity to height and motion of bistatic SAR interferometry: a spectral view[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5212212.
    [2] WU Y M, SUO Y X, MENG Q B, et al. FAIR-CSAR: a benchmark dataset for fine-grained object detection and recognition based on single-look complex SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5201022.
    [3] ZHAO CH H, LI K Y, WANG L, et al. A rapid SAR image simulation method for ship wakes coupled with sea waves using fluid velocity potential[J]. IEEE Signal Processing Letters, 2025, 32: 271-275. doi: 10.1109/LSP.2024.3514804
    [4] GOU SH P, LI D B, HAI D, et al. Spectral clustering with eigenvalue similarity metric method for POL-SAR image segmentation of land cover[J]. Journal of Geographic Information System, 2018, 10: 150-164. doi: 10.4236/jgis.2018.101007
    [5] PETTINATO S, SANTI E, PALOSCIA S, et al. Large area robust identification of snow cover from multitemporal COSMO-SkyMed images[J]. Proceedings of SPIE, 2015, 9642: 964204.
    [6] LI CH D, LI G Y, SONG Y CH, et al. Fast forest fire detection and segmentation application for UAV-assisted mobile edge computing system[J]. IEEE Internet of Things Journal, 2024, 11(16): 26690-26699. doi: 10.1109/JIOT.2023.3311950
    [7] QIN CH, ZHANG L P, WANG X Q, et al. RDB-DINO: an improved end-to-end transformer with refined de-noising and boxes for small-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5200517.
    [8] JOSHI G P, ALENEZI F, THIRUMOORTHY G, et al. Ensemble of deep learning-based multimodal remote sensing image classification model on unmanned aerial vehicle networks[J]. Mathematics, 2021, 9(22): 2984. doi: 10.3390/math9222984
    [9] SUN Y X, FENG SH SH, YE Y M, et al. Multisensor fusion and explicit semantic preserving-based deep hashing for cross-modal remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5219614.
    [10] THAKUR R S, YADAV R N, GUPTA L. State-of-art analysis of image denoising methods using convolutional neural networks[J]. IET Image Processing, 2019, 13(13): 2367-2380. doi: 10.1049/iet-ipr.2019.0157
    [11] DUAN Y P, TAO X M, HAN C Y, et al. Multi-scale convolutional neural network for SAR image semantic segmentation[C]. 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, 2018: 1-6.
    [12] WANG CH, YIN ZH X, MA X SH, et al. SAR image despeckling based on block-matching and noise-referenced deep learning method[J]. Remote Sensing, 2022, 14(4): 931. doi: 10.3390/rs14040931
    [13] GUO Q, LIU J N, KALIUZHNYI M. YOLOX-SAR: high-precision object detection system based on visible and infrared sensors for SAR remote sensing[J]. IEEE Sensors Journal, 2022, 22(17): 17243-17253. doi: 10.1109/JSEN.2022.3186889
    [14] WANG P Y, ZHANG H, PATEL V M. SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(12): 1763-1767. doi: 10.1109/LSP.2017.2758203
    [15] ZHANG Q, YUAN Q Q, LI J, et al. Learning a dilated residual network for SAR image despeckling[J]. Remote Sensing, 2018, 10(2): 196. doi: 10.3390/rs10020196
    [16] 王曦. 基于深度学习的SAR图像目标识别方法研究[D]. 成都: 电子科技大学, 2022.

    WANG X. Research on SAR image target recognition method based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese).
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  53
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-10
  • 录用日期:  2025-01-17
  • 网络出版日期:  2025-01-26

目录

    /

    返回文章
    返回