留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Color projector light intensity adaptive high dynamic range 3D measurement method

HUANG Hao-zhen NIU Bin CHENG Shen QU Xing-hua ZHANG Fu-min

黄浩珍, 牛斌, 程深, 曲兴华, 张福民. 彩色投影仪光强自适应高动态三维测量方法[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0038
引用本文: 黄浩珍, 牛斌, 程深, 曲兴华, 张福民. 彩色投影仪光强自适应高动态三维测量方法[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0038
HUANG Hao-zhen, NIU Bin, CHENG Shen, QU Xing-hua, ZHANG Fu-min. Color projector light intensity adaptive high dynamic range 3D measurement method[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0038
Citation: HUANG Hao-zhen, NIU Bin, CHENG Shen, QU Xing-hua, ZHANG Fu-min. Color projector light intensity adaptive high dynamic range 3D measurement method[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0038

彩色投影仪光强自适应高动态三维测量方法

详细信息
  • 中图分类号: TH741

Color projector light intensity adaptive high dynamic range 3D measurement method

doi: 10.37188/CO.EN-2024-0038
Funds: Supported by National Natural Science Foundation of China (No. 52375546).
More Information
    Author Bio:

    HUANG Hao-zhen (1994—), male, born in Xiangcheng, Henan Province. received the B.S. and M.S. degrees from Tiangong University, in 2018 and 2021, respectively, and is currently pursuing the Ph.D. degree in Instrument Science and Technology at Tianjin University. His main research focuses on optical three-dimensional measurement. E-mail: huanghaozhen0913@126.com

    ZHANG Fu-min (1982—), male, Tianjin Municipality. Ph.D, Professor, School of Precision Instrument and Opto-electronics Engineering, Tianjin University. He has long been engaged in the research and industrial application of key technologies related to visual 3D measurement and laser measurement. E-mail: zhangfumin@tju.edu.cn

    Corresponding author: zhangfumin@tju.edu.cn
  • 摘要:

    单一曝光时间或单一投影强度的条纹投影轮廓术(FPP)系统方法受限于相机的动态范围,会导致图像的过饱和和欠饱和,从而造成点云缺失或精度降低。为了解决这一问题,有别于投影仪像素调制方法,我们利用彩色投影仪三通道LED投影强度可单独控制的特点,提出了投影仪三通道光强分离的方法,结合彩色相机,实现了单曝光、多光强图像采集。进一步地,将串扰系数应用到被测物体三通道反射率预测中,结合聚类与通道映射,建立了投影仪三通道电流与相机三通道图像光强的像素级映射模型,实现了最佳投影电流预测和高动态范围图像获取。我们所提出的方法只需一次曝光就能实现高动态范围场景的高精度三维数据获取,该方法的有效性已通过标准平面和标准台阶的实验进行了验证,相比于现有单曝光高动态方法显著降低了平均绝对误差(44.6%), 相比于多曝光融合方法所需要的采集图像数量显著减小(文中场景下图片数量减小70.8%),提出的方法在各种 FPP 相关领域具有巨大潜力。

     

  • Figure 1.  Hardware and algorithm flowchart. (a) System Schematic. (b) HDR Image Prediction. (c) Color multi-channel projector current adaptive modulation. (d) Crosstalk calibration process. (e) Color image channel separation and fusion.

    Figure 2.  Crosstalk calibration curve calculation. (a) Three-color image acquisition and channel separation. (b) Blue channel crosstalk fitting to green and red channels. (c) Green channel crosstalk fitting to blue and red channels. (d) Red channel crosstalk fitting to green and blue channels.

    Figure 3.  HDR image calculation. (a) Pre-acquisition image. (b) Reflectance calculation of the measured scene,b-1 is the reflectance coefficient of the ${I^{120}}(x,y;t)$ non-over-exposed region, b-2 is the distribution and fitting result of $ LB(x,y) $ and ${I^{120}}(x,y;t)$, b-3 is the reflectance coefficient of the ${I^{120}}(x,y;t)$ over-exposed region, and b-4 the reflectance coefficient of the measured scene. (c) High dynamic range measured scene data.

    Figure 4.  Three-channel image crosstalk removal and three-channel HDR image acquisition.

    Figure 5.  Clustering and optimal light intensity calculation.

    Figure 6.  System diagram.

    Figure 7.  High dynamic range streak acquisition for highly reflective objects.

    Figure 8.  HDR scene measurement experiment. (a) 3D data obtained using traditional methods. (b) 3D data obtained using the method proposed in this paper.

    Figure 9.  Comparison of measurement results. (a) 3D data acquired by the traditional method. (b) 3D data acquired by Liu's method[26]. (c) 3D data acquired by Zhang's proposed method[15]. (d) 3D data acquired by the method in this paper.

    Figure 10.  Highly reflective standards and step measurement result. (a) 3D data obtained by the traditional method. (b) 3D data obtained by Liu's method[26]. (c) 3D data obtained by the method in this paper. (d) planar RMSEs of the three methods.

    Table  1.   Crosstalk calibration results

    $ {a_{ \to R}} $$ {{\text{b}}_{ \to R}} $$ {a_{ \to G}} $$ {{\text{b}}_{ \to G}} $$ {a_{ \to B}} $$ {{\text{b}}_{ \to B}} $
    R100.2093.0810.1294.789
    G0.2683.307100.1935.537
    B0.0823.9950.3143.19410
    下载: 导出CSV

    Table  2.   Comparison of measurement accuracy

    Step distance (mm) Liu[26] proposed method
    values errors values errors
    12.053 12.094 0.041 12.070 0.017
    10.006 10.040 0.034 10.029 0.023
    8.018 7.991 0.027 8.002 0.016
    6.016 5.999 0.017 6.026 0.010
    下载: 导出CSV

    Table  3.   Comparison of the proposed method with the latest multi-exposure methods

    Method Traditional Wang[5] Liu[26] Zhang[15] proposed
    Number of exposure times 1 3 1 4 1
    Number of captured images 12 13*3+1=40 12+1=13 12*4=48 12+2=14
    Number of point clouds 989260 —— 1022294 1026280 1025844
    RMSE (mm) 0.073 —— 0.031 0.025 0.026
    下载: 导出CSV
  • [1] YANG SH CH, HUANG H L, WU G X, et al. High-speed three-dimensional shape measurement with inner shifting-phase fringe projection profilometry[J]. Chinese Optics Letters, 2022, 20(11): 112601. doi: 10.3788/COL202220.112601
    [2] ZHENG ZH J, GAO J, ZHANG L Y, et al. A novel defocus-degree-based phase unwrapping and fusion algorithm for high-speed and large-depth-range 3D measurement[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 4278-4288. doi: 10.1109/TIE.2022.3176265
    [3] MO C L, WANG L ZH, REN M D, et al. Scanning measurement method of small size parts without marks[J]. Chinese Optics, 2024, 17(2): 409-422. (in Chinese). doi: 10.37188/CO.2023-0103
    [4] ZUO CH, FENG SH J, HUANG L, et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi: 10.1016/j.optlaseng.2018.04.019
    [5] WANG ZH Y, LI K, GAO N, et al. High dynamic range 3D shape measurement based on crosstalk characteristics of a color camera[J]. Optics Express, 2023, 31(23): 38318-38333. doi: 10.1364/OE.504447
    [6] SONG ZH, JIANG H L, LIN H B, et al. A high dynamic range structured light means for the 3D measurement of specular surface[J]. Optics and Lasers in Engineering, 2017, 95: 8-16. doi: 10.1016/j.optlaseng.2017.03.008
    [7] LIU Z L, LI M Y, LU X Y, et al. On-machine detection technology and application progress of high dynamic range fringe structured light[J]. Chinese Optics, 2024, 17(1): 1-18. (in Chinese). doi: 10.37188/CO.2023-0068
    [8] RI SH E, FUJIGAKI M, MORIMOTO Y. Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera[J]. Applied Optics, 2008, 47(29): 5400-5407. doi: 10.1364/AO.47.005400
    [9] NIU B, QU X H, GUAN X M, et al. Rapid detection of highly reflective surface defects based on digital micromirror device[J]. Optics Communications, 2021, 501: 127385. doi: 10.1016/j.optcom.2021.127385
    [10] HUANG H ZH, NIU B, CHENG S, et al. Adaptive pixel-by-pixel modulated 3-D morphometry based on digital micromirror device[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5012010.
    [11] SURESH V, WANG Y J, LI B W. High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device[J]. Optics and Lasers in Engineering, 2018, 107: 176-181. doi: 10.1016/j.optlaseng.2018.03.030
    [12] ZHANG S. Rapid and automatic optimal exposure control for digital fringe projection technique[J]. Optics and Lasers in Engineering, 2020, 128: 106029. doi: 10.1016/j.optlaseng.2020.106029
    [13] ZHANG L, CHEN Q, ZUO CH, et al. Real-time high dynamic range 3D measurement using fringe projection[J]. Optics Express, 2020, 28(17): 24363-24378. doi: 10.1364/OE.398814
    [14] WANG J H, ZHOU Y G, YANG Y X. A novel and fast three-dimensional measurement technology for the objects surface with non-uniform reflection[J]. Results in Physics, 2020, 16: 102878. doi: 10.1016/j.rinp.2019.102878
    [15] ZHANG S, YAU S T. High dynamic range scanning technique[J]. Optical Engineering, 2009, 48(3): 033604. doi: 10.1117/1.3099720
    [16] WANG J H, YANG Y X. A new method for high dynamic range 3D measurement combining adaptive fringe projection and original-inverse fringe projection[J]. Optics and Lasers in Engineering, 2023, 163: 107490. doi: 10.1016/j.optlaseng.2023.107490
    [17] WANG J H, XU P, SHAO M W, et al. High dynamic range 3D shape reconstruction: combination of adaptive fringe intensity, iterative exposure time adjustment and least quadratic curve fitting[J]. Optik, 2024, 307: 171813. doi: 10.1016/j.ijleo.2024.171813
    [18] SUN J H, ZHANG Q Y. A 3D shape measurement method for high-reflective surface based on accurate adaptive fringe projection[J]. Optics and Lasers in Engineering, 2022, 153: 106994. doi: 10.1016/j.optlaseng.2022.106994
    [19] LIU Y ZH, FU Y J, CAI X Q, et al. A novel high dynamic range 3D measurement method based on adaptive fringe projection technique[J]. Optics and Lasers in Engineering, 2020, 128: 106004. doi: 10.1016/j.optlaseng.2020.106004
    [20] LIN H, GAO J, MEI Q, et al. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement[J]. Optics Express, 2016, 24(7): 7703-7718. doi: 10.1364/OE.24.007703
    [21] LI M H, CAO Y P, WU H T. Three-dimensional reconstruction for highly reflective diffuse object based on online measurement[J]. Optics Communications, 2023, 533: 129276. doi: 10.1016/j.optcom.2023.129276
    [22] HU Y, CHEN Q, LIANG Y CH, et al. Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme[J]. Optics and Lasers in Engineering, 2019, 122: 1-7. doi: 10.1016/j.optlaseng.2019.05.019
    [23] FENG W, XU SH N, WANG H H, et al. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation[J]. Chinese Optics, 2022, 15(3): 488-497. (in Chinese). doi: 10.37188/CO.2021-0220
    [24] FENG W, TANG SH J, ZHAO X D, et al. Three-dimensional shape measurement method of high-reflective surfaces based on adaptive fringe-pattern[J]. Acta Optica Sinica, 2020, 40(5): 0512003. (in Chinese). doi: 10.3788/AOS202040.0512003
    [25] CAI X X, XU R H, LI H, et al. High-reflective surfaces shape measurement technology based on adaptive fringe projection[J]. Sensors and Actuators A: Physical, 2022, 347: 113916. doi: 10.1016/j.sna.2022.113916
    [26] LIU Y ZH, FU Y J, ZHUAN Y H, et al. High dynamic range real-time 3D measurement based on Fourier transform profilometry[J]. Optics & Laser Technology, 2021, 138: 106833.
    [27] OTI E U, OLUSOLA M O, EZE F C, et al. Comprehensive review of K-means clustering algorithms[J]. International Journal of Advances in Scientific Research and Engineering, 2021, 7(8): 64-69. doi: 10.31695/IJASRE.2021.34050
    [28] LAI B Y, CHIANG P J. Improved structured light system based on generative adversarial networks for highly-reflective surface measurement[J]. Optics and Lasers in Engineering, 2023, 171: 107783. doi: 10.1016/j.optlaseng.2023.107783
    [29] IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622: 178-210. doi: 10.1016/j.ins.2022.11.139
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  63
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-12
  • 录用日期:  2025-01-25
  • 网络出版日期:  2025-02-26

目录

    /

    返回文章
    返回