留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization

ZHOU Yun-fei ZOU Lin-er CHENG Yang-bing SHEN Yun

周云飞, 邹林儿, 程杨炳, 沈云. 基于硫系玻璃的宽带消色差远红外超透镜参数化拓扑优化设计[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0003
引用本文: 周云飞, 邹林儿, 程杨炳, 沈云. 基于硫系玻璃的宽带消色差远红外超透镜参数化拓扑优化设计[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0003
ZHOU Yun-fei, ZOU Lin-er, CHENG Yang-bing, SHEN Yun. Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0003
Citation: ZHOU Yun-fei, ZOU Lin-er, CHENG Yang-bing, SHEN Yun. Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0003

基于硫系玻璃的宽带消色差远红外超透镜参数化拓扑优化设计

详细信息
  • 中图分类号: O439

Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization

doi: 10.37188/CO.EN-2025-0003
Funds: Supported by the National Natural Science Foundation of China (NSFC) (No. 62165008); the Natural Science Foundation of Jiangxi Province,China (No. 20212ACB201007)
More Information
    Author Bio:

    ZOU Lin-er (1971—), male, born in Jian, Jiangxi Province, Doctor, professor, doctoral supervisor, mainly engaged in integrated optical technology and device, metassurficial optical design. E-mail: linerzou@ncu.edu.cn

    Corresponding author: linerzou@ncu.edu.cn
  • 摘要:

    超透镜技术在小型化、集成化红外成像系统中有着广泛的应用。然而,由于单元结构的色散较高,导致超透镜经常出现色差,使得宽带消色差红外成像难以实现。该文章构建了基于硫系玻璃的6种不同单元结构,并对其相位色散参数进行分析,建立数据库。在此基础上,采用色差补偿和参数化伴随拓扑优化的方法,在远红外波段将这6种单元结构排列组合,设计出数值孔径为0.5的宽带消色差超透镜。仿真结果表明,该超透镜在9~11µm的工作波长范围内实现了近衍射极限聚焦,具有良好的消色差性能,全波长具有为54%~58%的平坦的聚焦效率。

     

  • Figure 1.  (a) Schematic for achromatic metalens. (b) Schematic for phase profile of an achromatic metalens

    Figure 2.  The side and top views of the six different unit structures

    Figure 3.  (a) Phase simulation results of unit structure. (b) Distributions of the phase-dispersion parameters for the solid square column structure, where red cross and blue point represent the phase-dispersion parameters of an actual square column structure and the theoretical structure, respectively. (c) Database of the phase-dispersion parameters for all unit structures. (d) Distributions of the phase-dispersion parameters of the initial structure closest to theoretical structures for each position

    Figure 4.  The workflow of the parameterized adjoint topology optimization process

    Figure 5.  (a) Forward simulation light path. (b) Adjoint simulation light path

    Figure 6.  (a) Schematic diagram of the unit structures changes. (b) The normalized phase distribution of the metalens after the iteration step of 0 and 40. (c) Variation of focusing efficiency corresponding to different incident wavelengths concerning the step of optimization iterations

    Figure 7.  (a) Distribution of normalized light intensity on the x-z plane, with the white dashed line indicating the position at 180 µm. (b) Distribution of normalized light intensity at the focal point on the x-y plane

    Figure 8.  (a) Focal lengths at different wavelengths. (b) FWHM values at different wavelengths, and corresponding FWHM values that meet the diffraction limit

    Figure 9.  Focusing efficiency of the metalens at different wavelengths

    Figure 10.  (a) The original image. (b) The simulated image in the wavelength range of 9−11 µm

    Table  1.   Summary of performances for broadband achromatic metalens

    NA Operating wavelength/µm Diameter/µm Average focusing efficiency Polarization Ref.
    0.6 0.45−0.75 6 45% Insensitive [11]
    0.6 0.63 20 65% Circular [10]
    0.11 0.62 112 45% Circular [24]
    0.38 3−5 30 46.5% Insensitive [8]
    0.56 0.64 10.2 50% Circular [25]
    0.82 15.5 50 72% Circular [26]
    0.54 8.6−11.4 191.4 38.2% Circular [27]
    0.5 9−11 204 56% (54%−58%) Insensitive This paper
    下载: 导出CSV
  • [1] AHMAD M, LI J N, ZHOU R Y, et al. Ultrathin ring-shaped metasurface for a multiview 3D display[J]. Applied Optics, 2024, 63(19): 5217-5222.
    [2] WU ZH X, ZOU Y Y, DENG H, et al. Broadband devices for a polarization converter based on optical metasurfaces[J]. Applied Optics, 2022, 61(24): 7119-7124. doi: 10.1364/AO.464801
    [3] OU K, YU F L, LI G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Science Advances, 2020, 6(37): eabc0711.
    [4] CHEN J, YU F L, LIU X S, et al. Polychromatic full-polarization control in mid-infrared light[J]. Light: Science & Applications, 2023, 12(1): 105.
    [5] WANG J X, YU F L, CHEN J, et al. Continuous‐spectrum–polarization recombinant optical encryption with a dielectric metasurface[J]. Advanced Materials, 2023, 35(41): 2304161.
    [6] LI Y P, LUO J CH, JI R N, et al. Long wavelength infrared metalens fabricated by photolithography[J]. Journal of Infrared and Millimeter Waves, 2024, 43(5): 603-608. (in Chinese).
    [7] KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
    [8] WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.
    [9] XIE Y, ZHANG J Q, WANG SH Y, et al. Broadband achromatic polarization-insensitive metalens in the mid-wave infrared range[J]. Applied Optics, 2022, 61(14): 4106-4112.
    [10] SANG D, XU M F, PU M B, et al. Toward high‐efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization[J]. Laser & Photonics Reviews, 2022, 16(10): 2200265.
    [11] MANSOUREE M, MCCLUNG A, SAMUDRALA S, et al. Large-scale parametrized metasurface design using adjoint optimization[J]. ACS Photonics, 2021, 8(2): 455-463. doi: 10.1021/acsphotonics.0c01058
    [12] PHAN T, SELL D, WANG E W, et al. High-efficiency, large-area, topology-optimized metasurfaces[J]. Light: Science & Applications, 2019, 8: 48.
    [13] CHRISTIANSEN R E, SIGMUND O. Inverse design in photonics by topology optimization: tutorial[J]. Journal of the Optical Society of America B, 2021, 38(2): 496-509.
    [14] LIN Z, LIU V, PESTOURIE R, et al. Topology optimization of freeform large-area metasurfaces[J]. Optics Express, 2019, 27(11): 15765-15775.
    [15] CHEN F T, CRAIGHEAD H G. Diffractive lens fabricated with mostly zeroth-order gratings[J]. Optics Letters, 1996, 21(3): 177-179.
    [16] LALANNE P, ASTILEAN S, CHAVEL P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi: 10.1364/OL.23.001081
    [17] ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069. doi: 10.1038/ncomms8069
    [18] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [19] BAYATI E, ZHAN A L, COLBURN S, et al. Role of refractive index in metalens performance[J]. Applied Optics, 2019, 58(6): 1460-1466. doi: 10.1364/AO.58.001460
    [20] YANG J J, FAN J A. Analysis of material selection on dielectric metasurface performance[J]. Optics Express, 2017, 25(20): 23899-23909. doi: 10.1364/OE.25.023899
    [21] JENSEN J S, SIGMUND O, REVIEWS P. Topology optimization for nano‐photonics[J]. Laser & Photonics Reviews, 2011, 5(2): 308-321.
    [22] SELL D, YANG J J, DOSHAY S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752-3757. doi: 10.1021/acs.nanolett.7b01082
    [23] LIAO W P, LIU H L, LIN Y F, et al. I-line photolithographic metalenses enabled by distributed optical proximity correction with a deep-learning model[J]. Optics Express, 2022, 30(12): 21184-21194. doi: 10.1364/OE.456469
    [24] ZHAN A L, COLBURN S, TRIVEDI R, et al. Low-contrast dielectric metasurface optics[J]. ACS Photonics, 2016, 3(2): 209-214. doi: 10.1021/acsphotonics.5b00660
    [25] ELSAWY M M R, GOURDIN A, BINOIS M, et al. Multiobjective statistical learning optimization of RGB metalens[J]. ACS Photonics, 2021, 8(8): 2498-2508. doi: 10.1021/acsphotonics.1c00753
    [26] WEI H M, HU W C, PANG F F. Inverse design of high-performance near-infrared polymer metalens[J]. Acta Optica Sinica, 2024, 44(8): 0822002. (in Chinese). doi: 10.3788/AOS231859
    [27] WU H, YI Y T, ZHANG N, et al. Inverse design broadband achromatic metasurfaces for longwave infrared[J]. Optical Materials, 2024, 148: 114923. doi: 10.1016/j.optmat.2024.114923
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  39
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2025-02-13
  • 录用日期:  2025-04-09
  • 网络出版日期:  2025-05-21

目录

    /

    返回文章
    返回