留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Same-path dual-wavelength image plane digital holography for long-distance topographic measurements

DING Meng-yu YUAN Ming-jia ZHANG Lei

丁梦雨, 袁铭嘉, 张磊. 共路双波长像面数字全息远距离形貌测量[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0008
引用本文: 丁梦雨, 袁铭嘉, 张磊. 共路双波长像面数字全息远距离形貌测量[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0008
DING Meng-yu, YUAN Ming-jia, ZHANG Lei. Same-path dual-wavelength image plane digital holography for long-distance topographic measurements[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0008
Citation: DING Meng-yu, YUAN Ming-jia, ZHANG Lei. Same-path dual-wavelength image plane digital holography for long-distance topographic measurements[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0008

共路双波长像面数字全息远距离形貌测量

详细信息
  • 中图分类号: O438.1

Same-path dual-wavelength image plane digital holography for long-distance topographic measurements

doi: 10.37188/CO.EN-2025-0008
Funds: Supported by National Natural Science Foundation of China (No. 52275515); Open Funding of Magnetic Confinement Fusion Laboratory of Anhui Province (No. 2023AMF03004)
More Information
    Author Bio:

    DING Meng-yu (1999—), from Bozhou, Anhui. Received a Bachelor's degree from Anhui University of Science and Technology in 2022 and is currently a master's student at Anhui University. Primarily engaged in research on optical precision measurement. E-mail: b22201037@stu.ahu.edu.cn

    ZHANG Lei (1987—), from Shucheng, Anhui, Ph.D., Associate Professor. Received a Ph.D. from Zhejiang University in 2016. Primarily engaged in research on aspheric/freeform surface testing, interferometer development and application, structured light imaging, optical design, etc. E-mail: optzl@ahu.edu.cn

    Corresponding author: optzl@ahu.edu.cn
  • 摘要:

    双波长像面数字全息术用于实现远距离形貌测量,未来有望应用于实验先进超导托卡马克(EAST)偏滤器表面测量。照明与成像光束共路的设计适用于托卡马克装置的上部诊断通道。通过选择波长间隔为1.02 nm的两个波长,系统测量范围扩展到276.87 μm,可测量高度变化138.44 μm的表面。实验结果表明,系统对标称80 μm的台阶测量误差为7.00%,最小可测高度变化10 μm表面,对系统远距离的测量能力进行了验证,并对托卡马克装置拆除的偏滤器进行离线测量。上述结果证实,该系统有望用于偏滤器的形貌测量。

     

  • Figure 1.  System schematic diagram. (a) System schematic. (b) Fiber optic combining system.

    Figure 2.  The experiment layout. (a) Overall system layout. (b) The 80 µm step object. (c) Specific structure of the illumination and imaging parts.

    Figure 3.  Numerical reconstruction process of 80 µm step.

    Figure 4.  10 µm step measurement results. (a) The 10 µm step object. (b) Topography map representation with a 10 µm step. (c) Outline of the red line in (b).

    Figure 5.  3D topographies of coin at different distances. (a)-(e) 3D topographies of coin located 1m to 5 m away from the first mirror M, with a spacing of 1 m.

    Figure 6.  Topography of coin. (a) Coin at 2 m from the first mirror. (b) Coin at 3.5 m from the first mirror. (c) Coin at 5 m from the first mirror.

    Figure 7.  Divertor topography measurement result. (a) The divertor surface, where the red areas are simulated surface deposits. (b)The topography of the red area in (a). (c) The red line outline in (b).

    Table  1.   RMS values corresponding to 3D topography at different distances.

    Distance (m)12345
    RMS (µm)0.01420.01420.01430.01450.0145
    下载: 导出CSV
  • [1] HE L, SHEN Y C, ZHANG H M, et al. Space-resolved vacuum-ultraviolet spectroscopy for measuring impurity emission from divertor region of EAST tokamak[J]. Plasma Science and Technology, 2022, 24(6): 064003. doi: 10.1088/2058-6272/ac5f81
    [2] CATALUCCI S, THOMPSON A, PIANO S, et al. Optical metrology for digital manufacturing: a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(7): 4271-4290.
    [3] GUO R L, LU SH D, WU Y H, et al. Robust and fast dual-wavelength phase unwrapping in quantitative phase imaging with region segmentation[J]. Optics Communications, 2022, 510: 127965. doi: 10.1016/j.optcom.2022.127965
    [4] HUANG M, SUN CH, QIN H P, et al. Measurement of liquid refractive index by quantitative phase reconstruction of single frame dual-wavelength digital hologram[J]. Measurement, 2023, 206: 112325. doi: 10.1016/j.measurement.2022.112325
    [5] TURKO N A, SHAKED N T. Erythrocyte volumetric measurements in imaging flow cytometry using simultaneous three-wavelength digital holographic microscopy[J]. Biomedical Optics Express, 2020, 11(11): 6649-6658. doi: 10.1364/BOE.404368
    [6] YOSHIKAWA N, MIYAKE T. Omnidirectional 3D shape measurement using image outlines reconstructed from gabor digital holography[J]. Optics Communications, 2023, 529: 129080. doi: 10.1016/j.optcom.2022.129080
    [7] JEON S, CHO J, JIN J N, et al. Dual-wavelength digital holography with a single low-coherence light source[J]. Optics Express, 2016, 24(16): 18408-18416. doi: 10.1364/OE.24.018408
    [8] TIAN X B, TU X ZH, ZHANG J CH, et al. Snapshot multi-wavelength interference microscope[J]. Optics Express, 2018, 26(14): 18279-18291. doi: 10.1364/OE.26.018279
    [9] KÜHN J, COLOMB T, MONTFORT F, et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition[J]. Optics Express, 2007, 15(12): 7231-7242. doi: 10.1364/OE.15.007231
    [10] KHMALADZE A, KIM M, LO C M. Phase imaging of cells by simultaneous dual-wavelength reflection digital holography[J]. Optics Express, 2008, 16(15): 10900-10911. doi: 10.1364/OE.16.010900
    [11] TURKO N A, SHAKED N T. Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography[J]. Optics Letters, 2017, 42(1): 73-76. doi: 10.1364/OL.42.000073
    [12] SHANGGUAN H C, URBACH H P, KALKMAN J. Lensless single-shot dual-wavelength digital holography for industrial metrology[J]. Applied Optics, 2024, 63(16): 4427-4434. doi: 10.1364/AO.519491
    [13] ZENG Y N, WANG F, LEI H, et al. Surface profile measurement of microstructures based on dual-wavelength digital microscopic image-plane holography[J]. Acta Physica Sinica, 2013, 33(10): 1009001. (in Chinese).
    [14] WANG H Y, LIU F F, SONG X F, et al. High-quality digital image-plane micro-holographic system with the same wavefront curvature of reference and object wave[J]. Acta Physica Sinica, 2013, 62(2): 024207. (in Chinese). doi: 10.7498/aps.62.024207
    [15] GUO R L, WANG F. Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective[J]. Optics Express, 2017, 25(20): 24512-24520. doi: 10.1364/OE.25.024512
    [16] PINIARD M, SORRENTE B, HUG G, et al. Melt pool monitoring in laser beam melting with two-wavelength holographic imaging[J]. Light: Advanced Manufacturing, 2022, 3(1): 14-25.
    [17] CLAUS D, ALEKSEENKO I, GRABHERR M, et al. Snap-shot topography measurement via dual-VCSEL and dual wavelength digital holographic interferometry[J]. Light: Advanced Manufacturing, 2021, 2(4): 403-414.
    [18] PEDRINI G, ALEKSEENKO I, JAGANNATHAN G, et al. Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the International Thermonuclear Experimental Reactor tokamak[J]. Applied Optics, 2019, 58(5): A147-A155. doi: 10.1364/AO.58.00A147
    [19] HUANG M, QIN H P, JIANG ZH Q. Real-time quantitative phase imaging by single-shot dual-wavelength off-axis digital holographic microscopy[J]. Applied Optics, 2021, 60(15): 4418-4425. doi: 10.1364/AO.424666
    [20] BAI CH, PENG T, MIN J W, et al. Dual-wavelength in-line digital holography with untrained deep neural networks[J]. Photonics Research, 2021, 9(12): 2501-2510. doi: 10.1364/PRJ.441054
    [21] PINIARD M, SORRENTE B, HUG G, et al. Modelling of the photometric balance for two-wavelength spatially multiplexed digital holography[J]. Proceedings of SPIE, 2021, 11783: 1178308.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-14
  • 录用日期:  2025-03-18
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回