基于可拉伸光纤和干涉测量的振动传感器
Vibration sensor based on stretchable optical fiber and interferometric measurement
doi: 10.37188/CO.EN-2025-0010
-
摘要:
软聚合物光纤(SPOF)因其优异的机械性能和光导特性,在基于光学的可穿戴和可植入生物传感器中显示出巨大的潜力。然而,柔性光纤的多模态特性限制了它们与传统光纤传感器的集成。本文首次介绍了一种基于激光干涉技术的柔性光纤振动传感器,可应用于大拉伸条件下的振动测量。该传感器利用聚二甲基硅氧烷(PDMS)制成的弹性光纤作为传感元件,结合相位发生载体技术,在0~42%的拉伸范围内实现50~260 Hz的振动测量。
Abstract:Soft polymer optical fiber (SPOF) has shown great potential in optical based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics. However, the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors. This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology, which can be applied to vibration measurement under high stretch conditions. This sensor utilizes elastic optical fibers made of polydimethylsiloxane (PDMS) as sensing elements, combined with phase generating carrier technology, to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.
-
Figure 3. Mechanical and optical properties of SPOF: (a) PDMS transmission spectrum. (b) Optical loss evaluation of 5 SPOF samples, blue represents the optical loss measured without any testing, and red represents the optical loss measured after
1000 stretching cycles. (c) Optical loss of SPOF. (d) Optical loss of SPOF measured after1000 stretching cycles. -
[1] WANG R, SUN L F, ZHU X Y, et al. Carbon nanotube-based strain sensors: structures, fabrication, and applications[J]. Advanced Materials Technologies, 2023, 8(1): 2200855. doi: 10.1002/admt.202200855 [2] CHEN H, ZHUO F L, ZHOU J, et al. Advances in graphene-based flexible and wearable strain sensors[J]. Chemical Engineering Journal, 2023, 464: 142576. doi: 10.1016/j.cej.2023.142576 [3] LIU X H, MIAO J L, FAN Q, et al. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications[J]. Advanced Fiber Materials, 2022, 4(3): 361-389. doi: 10.1007/s42765-021-00126-3 [4] WANG X, ZHOU H Y, CHEN M H, et al. Wearable ultrasensitive and rapid human physiological monitoring based on microfiber Sagnac interferometer[J]. Science China Information Sciences, 2024, 67(3): 132403. doi: 10.1007/s11432-023-3870-1 [5] WEI W ZH, ZHANG L H, LIAO ZH Y, et al. Aerosol jet printing of advanced capacitive strain gauge for vibration monitoring of the human body[J]. The International Journal of Advanced Manufacturing Technology, 2025, 138(1): 31-43. doi: 10.1007/s00170-024-14499-3 [6] KAUR B, KUMAR S, KAUSHIK B K. Novel wearable optical sensors for vital health monitoring systems—A review[J]. Biosensors, 2023, 13(2): 181. doi: 10.3390/bios13020181 [7] SONG E H, CHEN M H, CHEN Z T, et al. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor[J]. Nature Communications, 2022, 13(1): 2166. doi: 10.1038/s41467-022-29881-6 [8] CHEN M H, HE Y CH, LIANG H H, et al. Stretchable and strain-decoupled fluorescent optical fiber sensor for body temperature and movement monitoring[J]. ACS Photonics, 2022, 9(4): 1415-1424. doi: 10.1021/acsphotonics.2c00249 [9] SHENTU ZH CH, KANG J, ZHU ZH CH, et al. No-core PDMS fiber for large-scale strain and concentration measurement[J]. Optical Fiber Technology, 2021, 63: 102531. doi: 10.1016/j.yofte.2021.102531 [10] GUO J J, NIU M X, YANG CH X. Highly flexible and stretchable optical strain sensing for human motion detection[J]. Optica, 2017, 4(10): 1285-1288. doi: 10.1364/OPTICA.4.001285 [11] GUO J J, LIU X Y, JIANG N, et al. Highly stretchable, strain sensing hydrogel optical fibers[J]. Advanced Materials, 2016, 28(46): 10244-10249. doi: 10.1002/adma.201603160 [12] YETISEN A K, JIANG N, FALLAHI A, et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid[J]. Advanced Materials, 2017, 29(15): 1606380. doi: 10.1002/adma.201606380 [13] SHABAHANG S, CLOUSER F, SHABAHANG F, et al. Single-mode, 700%-stretchable, elastic optical fibers made of thermoplastic elastomers[J]. Advanced Optical Materials, 2021, 9(12): 2100270. doi: 10.1002/adom.202100270 [14] LEBER A, CHOLST B, SANDT J, et al. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations[J]. Advanced Functional Materials, 2019, 29(5): 1802629. doi: 10.1002/adfm.201802629 [15] GUO J J, ZHOU B Q, YANG CH X, et al. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring[J]. Advanced Functional Materials, 2019, 29(33): 1902898. doi: 10.1002/adfm.201902898 [16] ZHOU B Q, FAN K K, GUO J J, et al. Plug-and-play fiber-optic sensors based on engineered cells for neurochemical monitoring at high specificity in freely moving animals[J]. Science Advances, 2023, 9(22): eadg0218. doi: 10.1126/sciadv.adg0218 -