留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Homodyne Littrow grating interferometer for two-degrees-of-freedom measurement

QIAN Xin-ge LIANG Xu LIU Zhao-wu GAO Xu JIN Si-yu LI Wen-hao

潜辛格, 梁旭, 刘兆武, 高旭, 金思宇, 李文昊. 零差利特罗光栅双轴干涉仪[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0019
引用本文: 潜辛格, 梁旭, 刘兆武, 高旭, 金思宇, 李文昊. 零差利特罗光栅双轴干涉仪[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0019
QIAN Xin-ge, LIANG Xu, LIU Zhao-wu, GAO Xu, JIN Si-yu, LI Wen-hao. Homodyne Littrow grating interferometer for two-degrees-of-freedom measurement[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0019
Citation: QIAN Xin-ge, LIANG Xu, LIU Zhao-wu, GAO Xu, JIN Si-yu, LI Wen-hao. Homodyne Littrow grating interferometer for two-degrees-of-freedom measurement[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0019

零差利特罗光栅双轴干涉仪

Homodyne Littrow grating interferometer for two-degrees-of-freedom measurement

doi: 10.37188/CO.EN-2025-0019
Funds: Supported by National Natural Science Foundation of China (No. 52305592); Jilin Provincial Scientific and Technological Development Program (No. 20240404065ZP, No. YDZJ202401295ZYTS); Natural Science Foundation of Jilin Province (No. 20230101217JC).
More Information
    Author Bio:

    QIAN Xinge (2000—), male, born in Lishui city, Zhejiang Province, Master's candidate, obtained a bachelor's degree from Guizhou University in 2022, mainly engaged in research on grating interferometry measurement systems. E-mail: qianxinge22@mails.ucas.ac.cn

    LIANG Xu (1993—), male, born in Changchun City, Jilin Province, Ph.D. holder, assistant research fellow, obtained a doctoral degree from the School of Precision Instrument and Optoelectronic Engineering at Tianjin University in 2022, mainly engaged in research on laser interference and grating precision displacement measurement. E-mail: liangxu@ciomp.ac.cn

    Corresponding author: liangxu@ciomp.ac.cn
  • 摘要:

    针对目前先进制造设备对于高精度平面位移测量的需求,本文提出了一种xz双轴光栅干涉仪,通过偏置分束镜配合直角棱镜反射镜搭建双侧Littrow入射光路结构。分析了出射光束平行性、光束间距与入射光位置、角度之间的关系。实验验证了提出干涉仪的可行性和测量性能,光栅干涉仪在x轴和z轴上分别实现4 nm、7 nm的位移分辨率,经海德曼算法修正后,将周期非线性误差抑制至±5 nm以内。10 mm行程范围内,x轴和z轴分别获得±30 nm和±100 nm的测量精度。最后讨论了由于非共点入射结构所引入的面型误差对测量结果的影响。

     

  • Figure 1.  (a) Optical path diagram of the xz homodyne two-DOF grating interferometer. (b) Displacement solve principle.

    Figure 2.  (a) Relation between the NPBS bias angle and the exiting light deflection angle. (b) Relation between incident height, NPBS refractive index and exit height.

    Figure 3.  (a) Photograph of the setup. (b) Synchronous trigger schematic

    Figure 4.  (a) 500μm motion and residual error. (b) Partial magnification of residual error.

    Figure 5.  (a) Lissajou figure before and after correction. (b) Comparison of residual error before and after correction.

    Figure 6.  (a) The original signal of the x-axis step test. (b) Results of the step test along the x-axes (c) The original signal of the z-axis step test. (d) Results of the step test along the z-axes.

    Figure 7.  Repeatability test results.

    Figure 8.  (a) Measurement for displacement of 10 mm along the x-axis. (b) Measurement for displacement of 10 mm along the z-axis.

    Figure 9.  (a) The results of the 10 mm displacement repeatability test on the x-axis. (b) The results of the 10 mm displacement repeatability test on the z-axis.

    Figure 10.  (a) Scale grating. (b) Wavefront of +1st-order. (c) Wavefront of -1st-order.

    Figure 11.  (a) Line error. (b) Substrate error. (c) Grating surface error.

  • [1] LI M, CHEN T T, CHENG R, et al. Dual-loop iterative learning control with application to an ultraprecision wafer stage[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11): 11590-11599. doi: 10.1109/TIE.2021.3120481
    [2] LI X C, ZHU H Y, MA J, et al. Data-driven multi-objective controller optimization for a magnetically-levitated nanopositioning system[J]. arXiv: 2007.02593, 2020. (查阅网上资料, 不确定文献类型及格式是否正确, 请确认).
    [3] SCHMIDT R H M. Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1973): 3950-3972. doi: 10.1098/rsta.2011.0054
    [4] CASTENMILLER T, VAN DE MAST F, DE KORT T, et al. Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform[C]. Proceedings of the SPIE 7640, Optical Microlithography XXIII, SPIE, 2010: 76401N.
    [5] CIDDOR P E. Refractive index of air: new equations for the visible and near infrared[J]. Applied Optics, 1996, 35(9): 1566-1573. doi: 10.1364/AO.35.001566
    [6] MA T CH, LI Z CH, CAO H L, et al. A parallel denoising model for dual-mass MEMS gyroscope based on PE-ITD and SA-ELM[J]. IEEE Access, 2019, 7: 169979-169991. doi: 10.1109/ACCESS.2019.2951612
    [7] SHIBAZAKI Y, KOHNO H, HAMATANI M. An innovative platform for high-throughput high-accuracy lithography using a single wafer stage[C]. Proceedings of the SPIE 7274, Optical Microlithography XXII, SPIE, 2009: 72741I.
    [8] TEIMEL A. Technology and applications of grating interferometers in high-precision measurement[J]. Precision Engineering, 1992, 14(3): 147-154. doi: 10.1016/0141-6359(92)90003-F
    [9] ZHOU W Y, SUN Y J, LIU ZH W, et al. A random angle error interference eliminating method for grating interferometry measurement based on symmetry littrow structure[J]. Laser & Photonics Reviews, 2025, 19(11): 2401659. doi: 10.1002/lpor.202401659
    [10] LI W H, WANG X Y, BAYANHESHIG, et al. Controlling the wavefront aberration of a large-aperture and high-precision holographic diffraction grating[J]. Light: Science & Applications, 2025, 14(1): 112.
    [11] BAI Y, HU P CH, LU Y F, et al. A six-axis heterodyne interferometer system for the joule balance[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(6): 1579-1585. doi: 10.1109/TIM.2016.2634758
    [12] ZHOU W Y, LI W H, LIU L, et al. Bidirectional two-degree-of-freedom grating interferometer with biased Littrow configuration[J]. Optics Communications, 2024, 557: 130333. doi: 10.1016/j.optcom.2024.130333
    [13] ZHU Y, ZHANG M, WANG L J, et al. Two-degree-of-freedom heterodyne grating interferometry measurement system: US, 11307018B2[P]. 2022-04-19.
    [14] ZHOU W Y, LIU ZH W, SUN Y J, et al. Bidirectional Littrow double grating interferometry for quadruple optical interpolation[J]. Optics & Laser Technology, 2024, 175: 110751. doi: 10.1016/j.optlastec.2024.110751
    [15] ZHOU W Y, SUN Y J, LI W H, et al. Polarization-folding ultra-wide spectral chromatic confocal line displacement sensor based on a binary lens[J]. Optics & Laser Technology, 2024, 177: 111152. doi: 10.1016/j.optlastec.2024.111152
    [16] HORI Y, GONDA S, BITOU Y, et al. Periodic error evaluation system for linear encoders using a homodyne laser interferometer with 10 picometer uncertainty[J]. Precision Engineering, 2018, 51: 388-392. doi: 10.1016/j.precisioneng.2017.09.009
    [17] HSIEH H L, PAN S W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J]. Optics Express, 2015, 23(3): 2451-2465. doi: 10.1364/OE.23.002451
    [18] LI X H, SHIMIZU Y, ITO T, et al. Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder[J]. Optical Engineering, 2014, 53(12): 122405. doi: 10.1117/1.OE.53.12.122405
    [19] GAO W, SAITO Y, MUTO H, et al. A three-axis autocollimator for detection of angular error motions of a precision stage[J]. CIRP Annals, 2011, 60(1): 515-518. doi: 10.1016/j.cirp.2011.03.052
    [20] HSIEH H L, PAN S W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry[J]. Applied Optics, 2013, 52(27): 6840-6848. doi: 10.1364/AO.52.006840
    [21] LI X H, WANG H H, NI K, et al. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating[J]. Optics Express, 2016, 24(19): 21378-21391. doi: 10.1364/OE.24.021378
    [22] SHI Y P, NI K, LI X H, et al. Highly accurate, absolute optical encoder using a hybrid-positioning method[J]. Optics Letters, 2019, 44(21): 5258-5261. doi: 10.1364/OL.44.005258
    [23] ZHU J H, WANG G CH, WANG S T, et al. A reflective-type heterodyne grating interferometer for three-degree-of-freedom subnanometer measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 7007509. doi: 10.1109/tim.2022.3213005
    [24] KIMURA A, GAO W, ARAI Y, et al. Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering, 2010, 34(1): 145-155. doi: 10.1016/j.precisioneng.2009.05.008
    [25] KIMURA A, GAO W, ZENG L J. Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder[J]. Measurement Science and Technology, 2010, 21(5): 054005. doi: 10.1088/0957-0233/21/5/054005
    [26] KIMURA A, HOSONO K, KIM WJ, et al. A two-degree-of-freedom linear encoder with a mosaic scale grating[J]. International Journal of Nanomanufacturing, 2011, 7(1): 73-91. doi: 10.1504/ijnm.2011.039964
    [27] WANG L J, ZHANG M, ZHU Y, et al. A novel heterodyne grating interferomter system for in-plane and out-of-plane displacement measurement with nanometer resolution[C]. Proceedings of the 29th Annual Meeting of the American Society for Precision Engineering, ASPE, 2014: 173-177.
    [28] LI S M, WANG J K, ZHANG W T, et al. Real-time direction judgment system of sub-nanometer scale grating ruler[J]. IEEE Access, 2021, 9: 74939-74948. doi: 10.1109/ACCESS.2021.3081152
    [29] ZENG Q L, ZHAO ZH Y, DU H, et al. Separation and compensation of nonlinear errors in sub-nanometer grating interferometers[J]. Optics Express, 2022, 30(26): 46259. doi: 10.1364/OE.471714
    [30] SHIBAZAKI Y, KANAYA Y. Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of moveable body before and after switching between sensor heads: US, 20120293788[P]. 2012-11-22.
    [31] GUAN J, KÖCHERT P, WEICHERT C, et al. A high performance one-dimensional homodyne encoder and the proof of principle of a novel two-dimensional homodyne encoder[J]. Precision Engineering, 2013, 37(4): 865-870. doi: 10.1016/j.precisioneng.2013.05.003
    [32] (查阅网上资料, 本条文献没有内容, 请确认).
    [33] LEE C K, WU C C, CHEN S J, et al. Design and construction of linear laser encoders that possess high tolerance of mechanical runout[J]. Applied Optics, 2004, 43(31): 5754-5762. doi: 10.1364/AO.43.005754
    [34] DE GROOT P J, BADAMI V G, LIESENER J. Concepts and geometries for the next generation of precision heterodyne optical encoders[C]. Proceedings of the 31st Annual Meeting of the American Society for Precision Engineering, ASPE, 2016: 146-149.
    [35] WANG L J, GUO Z W, YE W N, et al. Ultra-precision spatial-separated heterodyne Littrow grid encoder displacement measurement system[J]. Optics and Precision Engineering, 2022, 30(5): 499-509. (in Chinese). doi: 10.37188/OPE.20223005.0499
    [36] LIN J, GUAN J, WEN F, et al. Grating encoder for wide range three-axis displacement measurement[C]. Proceedings of the SPIE 9446, 9th International Symposium on Precision Engineering Measurements and Instrumentation (ISPEMI), SPIE, 2014: 944602.
    [37] LIN J, GUAN J, WEN F, et al. High-resolution and wide range displacement measurement based on planar grating[J]. Optics Communications, 2017, 404: 132-138. doi: 10.1016/j.optcom.2017.03.012
    [38] LI X T, BAYANHESHIG, QI X D, et al. Two-dimensional fast fourier transform method of analyzing the influence of plane grating′s line error and surface error on grating′s spectral performance[J]. Acta Optica Sinica, 2012, 32(11): 1105001. (in Chinese). doi: 10.3788/AOS201232.1105001
    [39] MAO X Y, ZENG L J. Design and fabrication of crossed gratings with multiple zero-reference marks for planar encoders[J]. Measurement Science and Technology, 2018, 29(2): 025204. doi: 10.1088/1361-6501/aa9d5e
  • 加载中
图(11)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  16
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-06
  • 录用日期:  2025-06-16
  • 网络出版日期:  2025-12-30

目录

    /

    返回文章
    返回