留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The poynting vector and angular momentum density of Cosh-Pearcey-Gaussian vortex beams in uniaxial crystals

LIANG Meng-ting CHENG Ke SHU Ling-yun LIAO Sai YANG Ceng-hao HUANG Hong-wei

梁梦婷, 程科, 舒凌云, 廖赛, 杨嶒浩, 黄宏伟. Cosh-Pearcey-Gaussian涡旋光束在单轴晶体中的坡印廷矢量和角动量密度[J]. 中国光学(中英文), 2023, 16(1): 193-201. doi: 10.37188/CO.EN.2022-0007
引用本文: 梁梦婷, 程科, 舒凌云, 廖赛, 杨嶒浩, 黄宏伟. Cosh-Pearcey-Gaussian涡旋光束在单轴晶体中的坡印廷矢量和角动量密度[J]. 中国光学(中英文), 2023, 16(1): 193-201. doi: 10.37188/CO.EN.2022-0007
LIANG Meng-ting, CHENG Ke, SHU Ling-yun, LIAO Sai, YANG Ceng-hao, HUANG Hong-wei. The poynting vector and angular momentum density of Cosh-Pearcey-Gaussian vortex beams in uniaxial crystals[J]. Chinese Optics, 2023, 16(1): 193-201. doi: 10.37188/CO.EN.2022-0007
Citation: LIANG Meng-ting, CHENG Ke, SHU Ling-yun, LIAO Sai, YANG Ceng-hao, HUANG Hong-wei. The poynting vector and angular momentum density of Cosh-Pearcey-Gaussian vortex beams in uniaxial crystals[J]. Chinese Optics, 2023, 16(1): 193-201. doi: 10.37188/CO.EN.2022-0007

Cosh-Pearcey-Gaussian涡旋光束在单轴晶体中的坡印廷矢量和角动量密度

详细信息
  • 中图分类号: TN929.1;

The poynting vector and angular momentum density of Cosh-Pearcey-Gaussian vortex beams in uniaxial crystals

doi: 10.37188/CO.EN.2022-0007
Funds: Supported by Sichuan Science and Technology Program (No. 23NSFSC1097)
More Information
    Author Bio:

    Mengting Liang (1997—), female, was born in Zigong, Sichuan province, M. Phil, College of Optoelectronic Engineering, Chengdu University of Information Technology. Her research interests are in the propagation and control of high-power lasers. E-mail: m1389008324@163.com

    Cheng Ke (1979—), male, was born in Jianli, Hubei  province, Ph. D, Professor, College of Optoelectronic Engineering, Chengdu University of Information Technology. His research interests are in the propagation and control of high-power lasers. E-mail: ck@cuit.edu.cn

    Corresponding author: ck@cuit.edu.cn
  • 摘要:

    为了分析和研究Cosh-Pearcey-Gaussian涡旋 (CPeGV)光束的传播特性,通过皮尔斯积分式得到了CPeGV光束传播的一般表达式,推导出CPeGV光束在单轴晶体中传播的解析式。详细研究了CPeGV光束在单轴晶体中传播时的纵向和横向坡印廷矢量和角动量密度(AMD)。探讨了双曲余弦参数、拓扑电荷和传播距离对CPeGV光束传播特性的影响。研究结果表明:与PeG光束相比,CPeGV光束的调制自由度更高。较大的双曲余弦调制参数可以控制能量沿横向坡印廷矢量方向传递,从而不仅可以改变能量分布也可以使AMD峰值变大。在远场,CPeGV光束的纵向坡印廷矢量随着双曲余弦参数的增大会从抛物线形状分离为四个波瓣的分布形状。而拓扑电荷会影响远场抛物线形状中暗区的数量。本文研究将有助于更好地理解 CPeGV光束在单轴晶体中的传播特性,并有助于信息传输和存储的应用。

     

  • Figure 1.  The dependence of Fourier spectrum of CPeGV beams on cosh modulation parameter Ω and topological charge m; (a) the topological charge m= 1; (b) the cosh modulation parameter Ω=5.

    Figure 2.  The intensity (backgrounds) and the transverse Poynting vector (arrows) of the CPeGV beams propagating in uniaxial crystal for different propagation distances z with different cosh modulation parameters Ω and ne=1.2no; (a): Ω=1; (b): Ω=2 and m=1.

    Figure 3.  The longitudinal and transverse Poynting vectors of the CPeGV beams for different cosh modulation parameters Ω and topological charges m at z=300ze. (a): m=0; (b): m=2.

    Figure 4.  The longitudinal AMD of the CPeGV beams propagating in uniaxial crystal for different propagation distances z with different cosh modulation parameters Ω and ne=1.2no, m=1. (a): Ω=1; (b): Ω=2

    Figure 5.  Maximum of angular momentum density of CPeGV beams in uniaxial crystal for different propagation distances z with different cosh modulation parameters Ω

    Figure 6.  The normalized AMD of the CPeGV beams in uniaxial crystal at z=300ze for different cosh modulation parameters Ω with different topological charges and ne=1.2no; (a): m=0; (b): m=2

  • [1] PEARCEY T. XXXI. The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1946, 37(268): 311-317. doi: 10.1080/14786444608561335
    [2] RING J D, LINDBERG J, MOURKA A, et al. Auto-focusing and self-healing of Pearcey beams[J]. Optics Express, 2012, 20(17): 18955-18966. doi: 10.1364/OE.20.018955
    [3] ZENG Z SH, DENG D M. Paraxial propagation of Pearcey Gaussian beams with the astigmatic phase in the chiral medium[J]. Journal of the Optical Society of America B, 2020, 37(1): 30-37. doi: 10.1364/JOSAB.37.000030
    [4] HUANG ZH C, WU Y, LIN Z J, et al. Effects of the multi-order and off-axis vortex on the propagation of Pearcey Gaussian vortex beams with the astigmatic phase in a chiral medium[J]. Waves in Random and Complex Media, 2021: 1-11.
    [5] JIANG J J, MO ZH W, XU D L, et al. Elliptical Pearcey beam[J]. Optics Communications, 2022, 504: 127475. doi: 10.1016/j.optcom.2021.127475
    [6] WU Y, ZHAO J J, LIN Z J, et al. Symmetric Pearcey Gaussian beams[J]. Optics Letters, 2021, 46(10): 2461-2464. doi: 10.1364/OL.425889
    [7] LIU Y J, XU CH J, LIN Z J, et al. Auto-focusing and self-healing of symmetric odd-Pearcey Gauss beams[J]. Optics Letters, 2020, 45(11): 2957-2960. doi: 10.1364/OL.394443
    [8] CIATTONI A, CINCOTTI G, PALMA C. Propagation of cylindrically symmetric fields in uniaxial crystals[J]. Journal of the Optical Society of America A, 2002, 19(4): 792-796. doi: 10.1364/JOSAA.19.000792
    [9] CIATTONI A, PALMA C. Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond[J]. Journal of the Optical Society of America A, 2003, 20(11): 2163-2171. doi: 10.1364/JOSAA.20.002163
    [10] ZHOU M L, CHEN CH D, CHEN B, et al. Propagation of an Airy-Gaussian beam in uniaxial crystals[J]. Chinese Physics B, 2015, 24(12): 124102. doi: 10.1088/1674-1056/24/12/124102
    [11] DENG D M, CHEN CH D, ZHAO X, et al. Propagation of an Airy vortex beam in uniaxial crystals[J]. Applied Physics B, 2013, 110(3): 433-436. doi: 10.1007/s00340-012-5273-5
    [12] XU CH J, LIN L D, HUANG ZH ZH, et al. Propagation of a Pearcey beam in uniaxial crystals[J]. Chinese Physics B, 2019, 28(2): 024201. doi: 10.1088/1674-1056/28/2/024201
    [13] ZHOU G Q, CHEN R P, CHU X X. Propagation of cosh-Airy beams in uniaxial crystals orthogonal to the optical axis[J]. Optics &Laser Technology, 2019, 116: 72-82.
    [14] XU CH J, WU J H, WU Y, et al. Propagation of the Pearcey Gaussian beams in a medium with a parabolic refractive index[J]. Optics Communications, 2020, 464: 125478. doi: 10.1016/j.optcom.2020.125478
    [15] LIAN M, GU B, ZHANG Y D, et al. Polarization rotation of hybridly polarized beams in a uniaxial crystal orthogonal to the optical axis: theory and experiment[J]. Journal of the Optical Society of America A, 2017, 34(1): 1-6. doi: 10.1364/JOSAA.34.000001
    [16] SZTUL H I, ALFANO R R. The Poynting vector and angular momentum of Airy beams[J]. Optics Express, 2008, 16(13): 9411-9416. doi: 10.1364/OE.16.009411
    [17] ALLEN L, PADGETT M J. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density[J]. Optics Communications, 2000, 184(1-4): 67-71. doi: 10.1016/S0030-4018(00)00960-3
    [18] CHENG K, ZHOU Y, LU G, et al. Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone[J]. Optics Communications, 2018, 415: 107-114. doi: 10.1016/j.optcom.2018.01.025
  • 加载中
图(6)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  111
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 修回日期:  2022-04-21
  • 网络出版日期:  2022-08-04

目录

    /

    返回文章
    返回