Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
XIAO Yong-chuan, WANG chao, ZHANG hao, ZHANG Ya-biao, YU Cai-bin, QU Peng-fei, SUN Li-jun. Improvement of transmission efficiency in microwave photonic links using EDFA[J]. Chinese Optics, 2020, 13(5): 995-1000. doi: 10.37188/CO.2019-0195
Citation: XIAO Yong-chuan, WANG chao, ZHANG hao, ZHANG Ya-biao, YU Cai-bin, QU Peng-fei, SUN Li-jun. Improvement of transmission efficiency in microwave photonic links using EDFA[J]. Chinese Optics, 2020, 13(5): 995-1000. doi: 10.37188/CO.2019-0195

Improvement of transmission efficiency in microwave photonic links using EDFA

Funds:  Supported by Postdoctoctoral Science Foundation of Chongqing (No. CSTC2019jcyj-bshx0103)
More Information
  • Corresponding author: xycwqy@163.com
  • Received Date: 25 Sep 2019
  • Rev Recd Date: 11 Nov 2019
  • Available Online: 29 Jun 2020
  • Publish Date: 05 Oct 2020
  • Photonics have long been viewed as an enabling technology that extends the sensing and signal processing performances of Radio Frequency (RF) remoting systems such as radar and electronic-warfare because of its inherent advantages in multi-octave operating frequencies, broad instantaneous bandwidth, low transmission loss, and good phase linearity. In order to improve the efficiency of the analog optical transmitter during electronic-to-optical conversion, an Erbium-Doped Fiber Amplifier (EDFA) combing with a low-bias modulator in an external intensity modulation direct detection link is applied. According to our analysis, the RF gain reduces linearly with modulator’s optical power output when the bias becomes close to its minimum. Thus, the gain provided by the EDFA to the optical signal was transferred to increase RF transmission efficiency. Experimental results indicated that the RF gain improved by 13.5 dB compared to that of conventional quadrature bias point transmissions. Meanwhile, a small penalty is introduced to system noise. Most importantly, this can be achieved by using off-the-shelf devices, which can drastically reduce the system’s cost. Finally, the proposed scheme can be widely used in electronic information equipment.

     

  • loading
  • [1]
    CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330. doi: 10.1038/nphoton.2007.89
    [2]
    YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335. doi: 10.1109/JLT.2008.2009551
    [3]
    李丽, 林玉池, 付鲁华, 等. 光纤光栅空分光复用传感系统的研究[J]. 光学 精密工程,2007,15(4):473-477.

    LI L, LIN Y CH, FU L H, et al. Research on spatial division multiplexing of fiber Bragg grating sensors[J]. Optics and Precision Engineering, 2007, 15(4): 473-477. (in Chinese)
    [4]
    HERVÁS J, RICCHIUTI A L, LI W, et al. Microwave photonics for optical sensors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 5602013.
    [5]
    PAN SH L, YAO J P. Photonics-based broadband microwave measurement[J]. Journal of Lightwave Technology, 2017, 35(16): 3498-3513. doi: 10.1109/JLT.2016.2587580
    [6]
    李冠鹏, 王辉, 张邦宏, 等. 用于雷达回波仿真的小型化微波光纤延迟线[J]. 光学 精密工程,2017,25(5):1206-1212. doi: 10.3788/OPE.20172505.1206

    LI G P, WANG H, ZHANG B H, et al. Compact microwave fiber delay line for radar echo simulation[J]. Optics and Precision Engineering, 2017, 25(5): 1206-1212. (in Chinese) doi: 10.3788/OPE.20172505.1206
    [7]
    GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345. doi: 10.1038/nature13078
    [8]
    王云新, 李静楠, 杜浩峥, 等. 基于强度-相位级联调制的微波光子下变频法[J]. 光学 精密工程,2017,25(4):827-834. doi: 10.3788/OPE.20172504.0827

    WANG Y X, LI J N, DU H ZH, et al. Microwave photonic down-conversion method using intensity-phase cascaded modulation[J]. Optics and Precision Engineering, 2017, 25(4): 827-834. (in Chinese) doi: 10.3788/OPE.20172504.0827
    [9]
    ZOU X H, BAI W L, CHEN W, et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. Journal of Lightwave Technology, 2018, 36(19): 4337-4346. doi: 10.1109/JLT.2018.2813663
    [10]
    SALES S, BARREA D, HERVÁS J, et al.. Microwave photonics for optical fiber sensors[C]. Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, IEEE, 2019: 1-3.
    [11]
    CAPMANY J, LI G F, LIM C, et al. Microwave photonics: current challenges towards widespread application[J]. Optics Express, 2013, 21(19): 22862-22867. doi: 10.1364/OE.21.022862
    [12]
    KARIM A, DEVENPORT J. High dynamic range microwave photonic links for RF signal transport and RF-IF conversion[J]. Journal of Lightwave Technology, 2008, 26(15): 2718-2724. doi: 10.1109/JLT.2008.927603
    [13]
    LI Y F, XU L T, JIN SH L, et al. Wideband OPLL photonic integrated circuit enabling ultrahigh dynamic range PM RF/photonic link[J]. Optica, 2019, 6(8): 1078-1083. doi: 10.1364/OPTICA.6.001078
    [14]
    KARIM A, DEVENPORT J. Optimization of linearity figure of merit for microwave photonic links[J]. IEEE Photonics Technology Letters, 2009, 21(13): 950-952. doi: 10.1109/LPT.2009.2021072
    [15]
    URICK V J, BUCHOLTZ F, MCKINNEY J D, et al. Long-haul analog photonics[J]. Journal of Lightwave Technology, 2011, 29(8): 1182-1205. doi: 10.1109/JLT.2011.2119292
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(1774) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return