Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
CHEN Hong-kai, WANG Ting-feng, WU Shi-song, LI Yuan-yang, GUO Jin, WU Hao. Time-frequency analysis of laser doppler radar vibration signals[J]. Chinese Optics, 2020, 13(5): 1014-1022. doi: 10.37188/CO.2019-0251
Citation: CHEN Hong-kai, WANG Ting-feng, WU Shi-song, LI Yuan-yang, GUO Jin, WU Hao. Time-frequency analysis of laser doppler radar vibration signals[J]. Chinese Optics, 2020, 13(5): 1014-1022. doi: 10.37188/CO.2019-0251

Time-frequency analysis of laser doppler radar vibration signals

Funds:  Supported by National Natural Science Foundation of China (No. 61805234)
More Information
  • Corresponding author: wangtingfeng@ciomp.ac.cn
  • Received Date: 31 Dec 2019
  • Rev Recd Date: 22 Feb 2020
  • Available Online: 09 Sep 2020
  • Publish Date: 05 Oct 2020
  • Most actual vibration signals measured by lidar are time-varying signals. Methods of time-frequency analysis based on Fourier transforms are effective tools for processing time-varying signals. In this paper, the properties of the Wigner-Wiley distribution, the smooth pseudo-Wigner-Wiley distribution, the spectrogram, the Bonn-Jordan distribution, and the extended modified B distribution are compared and analyzed with actual vibration signals measured by laser Doppler radar. Three kinds of vibrations are measured with a laser Doppler radar: chirps generated by a single loudspeaker, two-component chirps generated by two loudspeakers, and adult male heartbeat vibrations. Their time-frequency distribution resolution and the suppression of cross-terms are analyzed. By calculating the time-frequency concentration index, the analysis capacites of the five distributions for three vibrations are compared. Experimental results indicate that the performance of the extended modified B distribution is better than that of the other four time-frequency distributions. Therefore, the extended modified B distribution is more suitable for the detection of material resonance frequency of laser Doppler radar and the detection of heartbeat.

     

  • loading
  • WAZ A T, KACZMAREK P R, ABRAMSKI K M. Laser–fibre vibrometry at 1550 nm[J]. Measurement Science and Technology, 2009, 20(10): 105301. doi: 10.1088/0957-0233/20/10/105301
    甄佳奇, 仲维丹, 布音嘎日迪, 等. 正弦调制多光束激光外差测量压电材料电致伸缩系数[J]. 发光学报,2017,38(12):1661-1667. doi: 10.3788/fgxb20173812.1661

    ZHEN J Q, ZHONG W D, BU Y, et al. Piezoelectric material electrostriction coefficient measurement method combined sinusoidal modulation with multi-beam laser heterodyne[J]. Chinese Journal of Luminescence, 2017, 38(12): 1661-1667. (in Chinese) doi: 10.3788/fgxb20173812.1661
    陈家键, 胡慧珠, 缪立军, 等. 双频激光干涉三自由度微振动测量系统[J]. 光学 精密工程,2019,27(7):1435-1443. doi: 10.3788/OPE.20192707.1435

    CHEN J J, HU H ZH, MIAO L J, et al. Three-degree-of-freedom micro-vibration measurement system based on dual-frequency laser interference[J]. Optics and Precision Engineering, 2019, 27(7): 1435-1443. (in Chinese) doi: 10.3788/OPE.20192707.1435
    GABOR D. Theory of communication. Part 1: the analysis of information[J]. Journal of the Institution of Electrical Engineers - Part III:Radio and Communication Engineering, 1946, 93(26): 429-441. doi: 10.1049/ji-3-2.1946.0074
    ALMEIDA L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084-3091. doi: 10.1109/78.330368
    COHEN L. Generalized phase-space distribution functions[J]. Journal of Mathematical Physics, 1966, 7(5): 781-786. doi: 10.1063/1.1931206
    BOASHASH B. Time Frequency Signal Analysis and Processing: A Comprehensive Reference[M]. Amsterdam: Elsevier, 2003.
    BOASHASH B, BEN-JABEUR T. Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection[C]. Proceedings of the 2012 11th International Conference on Information Science, Signal Processing and Their Applications, IEEE, 2012: 354-359.
    VAN EEDEN W D, DE VILLIERS J P, BERNDT R J, et al. Micro-Doppler radar classification of humans and animals in an operational environment[J]. Expert Systems with Applications, 2018, 102: 1-11. doi: 10.1016/j.eswa.2018.02.019
    GAO Y Q, CHEN W H, YANG B, et al. Identifying users based on time-frequency characteristics[J]. Journal of Physics:Conference Series, 2019, 1302(4): 042035.
    LIU J L, WANG S F, ZHENG J Y, et al. Time-frequency signal processing for integrity assessment and damage localization of concrete piles[J]. International Journal of Structural Stability and Dynamics, 2020, 20(2): 2050020. doi: 10.1142/S0219455420500200
    MAJHI S, MUKHERJEE A, GEORGE N V, et al. Corrosion detection in steel bar: a time-frequency approach[J]. NDT &E International, 2019, 107: 102150.
    QI P F, WANG Y C. Seismic time–frequency spectrum analysis based on local polynomial Fourier transform[J]. Acta Geophysica, 2020, 68(1): 1-17. doi: 10.1007/s11600-019-00377-0
    IMADUDDIN S M, LAROVERE K L, KUSSMAN B D, et al. A time-frequency approach for cerebral embolic load monitoring[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(4): 1007-1018. doi: 10.1109/TBME.2019.2927709
    谢斌, 夏立新. 伪Wigner-Ville分布在心电信号时频分析中的应用[J]. 现代信息科技,2019,3(12):56-57, 60. doi: 10.3969/j.issn.2096-4706.2019.12.021

    XIE B, XIA L X. Application of pseudo Wigner-Ville distribution in time-frequency analysis of ECG signals[J]. Modern Information Technology, 2019, 3(12): 56-57, 60. (in Chinese) doi: 10.3969/j.issn.2096-4706.2019.12.021
    饶震红, 王明安, 陈蓁蓁, 等. 柠檬黄与玉米醇溶蛋白的相互作用研究[J]. 发光学报,2019,40(4):511-519. doi: 10.3788/fgxb20194004.0511

    RAO ZH H, WANG M A, CHEN ZH ZH, et al. Interaction between tartrazine and zein[J]. Chinese Journal of Luminescence, 2019, 40(4): 511-519. (in Chinese) doi: 10.3788/fgxb20194004.0511
    王云鹏, 胡以华, 雷武虎, 等. 基于激光回波时频图纹理特征的飞机目标分类方法[J]. 光学学报,2017,37(11):1128004. doi: 10.3788/AOS201737.1128004

    WANG Y P, HU Y H, LEI W H, et al. Aircraft target classification method based on texture feature of laser echo time-frequency image[J]. Acta Optica Sinica, 2017, 37(11): 1128004. (in Chinese) doi: 10.3788/AOS201737.1128004
    王云鹏, 胡以华, 雷武虎, 等. 典型旋翼形状参数微多普勒激光探测计算方法[J]. 红外与激光工程,2018,47(9):0906003. doi: 10.3788/IRLA201847.0906003

    WANG Y P, HU Y H, LEI W H, et al. Algorithm of typical rotor shape parameters by micro-Doppler laser detection[J]. Infrared and Laser Engineering, 2018, 47(9): 0906003. (in Chinese) doi: 10.3788/IRLA201847.0906003
    LÜ T, GUO J, ZHANG H Y, et al. Acquirement and enhancement of remote speech signals[J]. Optoelectronics Letters, 2017, 13(4): 275-278. doi: 10.1007/s11801-017-7059-9
    KURVINEN E, JOHN M, MIKKOLA A. Measurement and evaluation of natural frequencies of bulk ice plate using scanning laser Doppler vibrometer[J]. Measurement, 2020, 150: 107091. doi: 10.1016/j.measurement.2019.107091
    李晴棉, 李也凡, 何大伟, 等. 光外差电信号接收机[J]. 发光学报,1998,19(1):82-84. doi: 10.3321/j.issn:1000-7032.1998.01.017

    LI Q M, LI Y F, HE D W, et al. Optic heterodyning electronic signals receiving device[J]. Chinese Journal of Luminescence, 1998, 19(1): 82-84. (in Chinese) doi: 10.3321/j.issn:1000-7032.1998.01.017
    张晓琳, 唐文彦, 孙和义. 水下声信号的激光干涉测量[J]. 光学 精密工程,2010,18(4):809-815.

    ZHANG X L, TANG W Y, SUN H Y. Laser interferometry of underwater acoustic signals[J]. Optics and Precision Engineering, 2010, 18(4): 809-815. (in Chinese)
    刘立生, 张合勇, 王挺峰, 等. 激光外差探测对振动目标多普勒频谱成像[J]. 光学 精密工程,2015,23(6):1508-1515. doi: 10.3788/OPE.20152306.1508

    LIU L SH, ZHANG H Y, WANG T F, et al. Doppler spectrum imaging of vibrating target using laser heterodyne detection[J]. Optics and Precision Engineering, 2015, 23(6): 1508-1515. (in Chinese) doi: 10.3788/OPE.20152306.1508
    JONES D L, PARKS T W. A high resolution data-adaptive time-frequency representation[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1990, 38(12): 2127-2135. doi: 10.1109/29.61539
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views(2263) PDF downloads(147) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return