
Citation: | YAN Chun-sheng, HUANG Chen, HAN Song-tao, HAN Xiu-li, YING Chao-nan, DU Yuan-dong. Review on scientific detection technologies for ancient paper relics[J]. Chinese Optics, 2020, 13(5): 936-964. doi: 10.37188/CO.2020-0010 |
In 1966, shortly after the advent of semiconductors, COOPER et al. [1] discovered that increasing the output power of GaAs homojunction semiconductor lasers to a certain level would result in Catastrophic Optical Damage (COD) and failure. In 1977, CHINONE et al. [2] discovered that an AlGaAs/GaAs double heterojunction semiconductor laser operated continuously for a certain period resulted in Catastrophic Optical Mirror Damage (COMD) on its cavity surface. Using Scanning Electron Microscope (SEM) observation, it was found that high power density light output and cavity surface oxidation were important factors leading to its COMD[3].
For InGaAs/AlGaAs high-power Quantum Well (QW) semiconductor lasers, COMD suppression should start from its induced mechanism [4]. According to test results, methods such as reducing non-radiative recombination at the cavity surface, suppressing light absorption of the cavity surface material, lowering the carrier concentration at the cavity surface, and improving the heat dissipation capacity at the cavity surface [5] can significantly suppress COMD. The preparation of non-absorbing windows based on Quantum Well Intermixing (QWI) technology is a low-cost and effective method to suppress the light absorption of cavity materials [6-7]. Commonly used QWI methods include Impurity Induced Disordering (IID), Impurity Free Vacancy Induced Disordering (IFVD), Laser Induced Disordering (LID), etc. [8-11]. Among them, in IID technique, a large number of point defects are induced by introducing impurities, and in combination with thermal annealing and other methods, the impurities and point defects are activated to obtain diffusion kinetic energy, ultimately causing changes in the composition and structure of quantum wells. In the 1980 s, LAIDIG [12] first found that QWI phenomenon occurred in AlAs/GaAs superlattice structures with the introduction of Zn impurities and heat treatment, and the heat treatment temperature in this method was only 575 °C, far below the temperature required for impurity free induced disordering. Until 1985, KALISKI [13] found that the effect of Si impurity inducing AlGaAs/GaAs superlattice QWI was better than that of other impurities. In 1987, MEI et al. [14] used Secondary Ion Mass Spectroscopy (SIMS) to test and found that the diffusion coefficient of Al atoms in AlGaAs materials increased significantly with the diffusion of Si impurities. Comprehensive research results show that Si impurities can form defect pairs with larger diffusion coefficients with Al atoms, and Si impurities can also increase the density of point defects in the QW system, thus effectively promoting the QWI of the AlAs/GaAs superlattice structure [6, 15].
This paper presents a Non-Absorbing Window (NAW) preparation scheme for InGaAs/AlGaAs high-power QW semiconductor lasers using the method of Si impurity induced QWI. This method is based on the principle that the Si impurity is used as an induction source, which can efficiently induce the atomic interdiffusion between the materials in the QW and the materials in the barrier of the InGaAs/AlGaAs semiconductor QW laser, eventually broadening the band gap of the active region material and suppressing its absorption of the self-generated laser. The preparation of NAW using the Si IID method not only reduces the optical absorption at the cavity surface of the laser, but also serves as an N-type doping element to form a non-carrier injection region at the cavity surface of the device, thus reducing the non-radiative composite here. This design does not require expensive equipment or complex processing, and can effectively increase the COMD threshold triggering power of the laser without changing its characteristic parameters.
The primary epitaxial wafers of the InGaAs/AlGaAs QW laser used in this paper were grown by Metal Oxide Chemical Vapor Deposition (MOCVD), with a reaction chamber growth temperature of 550−700 °C and a pressure of 5 kPa [16]. The substrate is n-GaAs with a (100) plane offset [111] A-crystal-orientation of 15°. The schematic diagram of the ridge laser structure formed based on this primary epitaxial wafer is shown in Figure 1(color online).
For In(1-x-y)GaxAlyAs quaternary compound semiconductor material, its band gap is shown in formula (1), so the increase of Al component will lead to the increase of Eg. Therefore, we determine whether QWI has occurred in the material by the central wavelength position. If a QWI occurs, it is proved that the Al component has entered the QWI material, and the band gap becomes wider, which is shown by the change of the luminescence wavelength toward the short wavelength, that is, the blue shift occurs.
Eg(eV)=0.36+0.629x+2.093y+0.436x2+0.577y2+1.01xy. |
(1) |
Photoluminescence (PL) spectroscopy test is a commonly used method to obtain the central wavelength of lasers. The original PL test results of the primary epitaxial wafer of InGaAs/AlGaAs QW lasers in this paper are shown in Figure 2. According to the mapping scan results, the luminescence intensity is uniform, indicating that the composition of each layer of the epitaxial wafer is uniform. From the single-point PL signal peak, it can be seen that the peak center wavelength is 1002.2 nm, and the Full Width at Half Maximum (FWHM) is about 23 nm.
The existence of point defects in crystals leads to the breaking of the perfect arrangement rules of lattice atoms, changes the vibration frequency of atoms around the defects, increases entropy, and deteriorates the thermodynamic stability[4]. By combining the diffusion coefficient equation of group III atomic point defects, it can be concluded that:
DIII=f1DVIIIAexp(−EVKBT)+f2DIIIIBexp(−EIKBT), |
(2) |
where
At the interface of two materials with high lattice mismatch, there will be a certain amount of stress, which will cause compressive or tensile stress on the surface of the material. The surface compressive stress will cause the GaAs lattice atoms to be squeezed, and some atoms, especially Ga atoms, will be squeezed out of the interface, leaving a certain number of vacancy defects on the GaAs surface [17]. To study the interface deformation during annealing process, the COMSOL multi-physical field modeling software was used to simulate the stress-strain behavior of GaAs with Si dielectric layers after annealing.
It is assumed that the epitaxial wafers are annealed at 850 °C, and stress is released when the annealing temperature drops to 200 °C, and finally stable deformation occurs at room temperature. The relevant parameters used in the calculation are shown in Table 1. The substrate material of the primary epitaxial wafer is 450 μm n-GaAs, the total thickness of the epitaxial wafer is approximately 4.5 μm, and both contain a large proportion of Ga and As components. To avoid calculation errors caused by excessive relative tolerance, the simulated substrate and epitaxial wafer are both 25-μm GaAs, with a dielectric layer of 200-nm Si. The simulation results based on COMSOL and magnified by 100 times are shown in Figure 4 (color online). It can be seen that the surface of GaAs undergoes compression caused by compressive stress after annealing, indicating that the Si dielectric layer will provide compressive stress to the GaAs surface and induce more Ga vacancies in GaAs, which is conducive to the QWI process.
Sample | GaAs | Si | SiO2 |
Young's modulus(Pa) | 8.50×1010 | 1.77×1011 | 7.31×1010 |
Poisson's ratio | 0.31 | 0.2891 | 0.17 |
Density(kg/m3) | 5500 | 2328 | 2203 |
Coefficient of thermal expansion(1/K) | 6.40×10−6 | 2.60×10−6 | 5.50×10−7 |
During the annealing process, covering with GaAs cover plates not only reduces surface contamination, but also provides a certain pressure for As concentration, which can inhibit the decomposition and volatilization of As on the surface of the epitaxial wafer to some extent. The surface morphology of the primary epitaxial wafer at 875 °C/90 s RTA is shown in Figure 5 (color online). Figures 5 (a) and 5 (b) show the surface morphology of primary epitaxial wafers with and without GaAs cover plates, respectively. Similar to the predicted results, the surface of epitaxial wafers with GaAs covers is smoother, and there are fewer ablative holes generated during annealing, indicating that the GaAs covers have a certain protective effect on the surface of the Si dielectric layer. Therefore, subsequent RTAs were conducted in the environment with GaAs covers.
The calculation results show that temperature has a significant effect on the diffusion coefficients of impurities and point defects. Therefore, the effect of temperature on QWI is investigated first. By using MOCVD, a 20-nm single crystal Si was grown on the surface of GaAs primary epitaxial wafers at the growth temperature of 800 °C. Then, a 90 s Rapid Thermal Annealing (RTA) was performed in the interval of 775 to 900 °C, and the PL results after annealing are shown in Figure 6 (color online). It can be seen that the effect of wavelength blue shift increases with the increase of heat treatment temperature. Compared to the original primary epitaxial wafers, a maximum wavelength blue shift of about 90 nm was obtained at 900 °C, but at this point, the FWHM was significantly widened and the waveform was severely deteriorated, indicating significant material damage. At 875 °C, the wavelength blue shift is about 57 nm, and the FWHM is well maintained. Therefore, it is believed that heat treatment at 875 °C can achieve a good QWI effect while also ensuring the lattice quality of the material.
The effect of heat treatment time on QWI is further investigated. The annealing temperature is always 875 °C, and the annealing time is set to 60 s, 90 s, and 120 s respectively. The PL results of the primary epitaxial wafers after annealing are shown in Figure 7 (color online). As the annealing time increases, the wavelength blue shift of the primary epitaxial wafer introducing Si impurities also gradually increases. However, when the annealing time reaches 120 s, the peak of the PL spectrum is already deformed. It indicates that after 90 s RTA treatment, a good blue shift effect can be achieved, and the peak intensity of the PL spectrum and the FWHM remain good.
If the Si grown on the epitaxial wafer surface is too thick, the lattice mismatch and the difference in coefficient of thermal expansion will be amplified, which will trigger the stress release during thermal annealing. The ability of a thinner Si layer to suppress the decomposition and outward volatilization of Ga and As atoms in the GaAs ohmic contact layer will also be weakened, so it is necessary to consider the effect of Si characteristics. The Si dielectric layer grown by MOCVD equipment is single crystal, and its lattice quality and density are affected by the reaction source, growth temperature and other conditions, so the Si dielectric layer grown under different conditions will also affect the QWI effect. Therefore, three types of Si epitaxial layers were prepared: 20 nm high-temperature Si grown at 800 °C, 20 nm low-temperature Si grown at 650 °C, and 50 nm low-temperature Si, set as # 1, # 2, and # 3, respectively, to investigate the optimal growth conditions for Si dielectric layers that induce best QWI effect.
Similarly, a single RTA treatment at 875 °C/90 s was applied to the group of the primary epitaxial wafers, and the PL spectra of the primary epitaxial wafers were tested after heat treatment, as shown in Figure 8 (color online). It can be seen that the difference of QWI effect caused by the three types of Si layers is relatively small. For Si layers with the same thickness, the effect of Si layer growth temperature on wavelength blue shift is relatively small, but the FWHM is narrower for the high-temperature Si layers. For Si layers with the same growth conditions, thicker Si layers cause more wavelength blue shifts, reaching about 57 nm, but their FWHM is also larger, indicating that the material quality is greatly affected.
In order to accurately understand the diffusion depth of Si atoms, EDS was used to test the element distribution at different depths on the epitaxial wafer. The Si IID primary epitaxial wafers treated with 875 °C/90 s RTA were carried out Si layer removal treatment, and then corroded for 0 s, 15 s, 30 s, and 45 s using a special solution. The test results are shown in Figure 9 (color online). Experience shows that the corrosion rate of the corrosive solution is about 25−35 nm/s, so the surface of the etched epitaxial wafer corresponds to different depths. From the EDS results, it can be seen that the p-type doping element of the primary epitaxial wafer is C, so the element C content is ligher when the surface layer of GaAs is not corroded moreover, the element Si content is also higher, and The content of both in the same order of magnitude; with the corrosion time increases to 15 s, the element C content gradually decreases, and the element Si content decreases significantly; when the corrosion time reaches 30 s, i.e., when the corrosion depth reaches approximately the upper limiting layer, the Si content has decreased to 22.2% of the original Si content in the surface layer; when the corrosion time further increases to 45 s, i.e., when the corrosion depth reaches approximately the upper waveguide layer or near the QW region, the Si content basically decreases to 0. This result shows that the Si impurities can diffuse into the upper waveguide layer of the primary epitaxial wafer after 875 °C/90 s RTA treatment, and then produce an effective QWI induction effect.
In order to comprehensively improve the performance index of InGaAs/AlGaAs semiconductor QW lasers, a feasible scheme for Si impurity induced QWI is investigated in this paper. The relationship between the effect of Si impurity-induced QWI and the nature of dielectric layer and heat treatment conditions was investigated by using the variable-controlling method with multiple sets of control conditions. The PL test results show that growing a 50 nm Si epitaxial dielectric layer at 650 °C in combination with 875 °C/90 s RTA heat treatment results in a wavelength blue shift of about 57 nm. Combined with EDS test, it is found that Si impurity atoms can diffuse into the upper waveguide layer or QW of the InGaAs/AlGaAs semiconductor QW laser primary epitaxial layer after 875 °C/90 s RTA, resulting in a significant QWI effect. In the future, Si impurity induced QWI NAW can be prepared by combining epitaxial growth technology and RTA technology to suppress CODs and continuously improve the output power of InGaAs/AlGaAs semiconductor QW lasers.
潘吉星. 关于造纸术的起源——中国古代造纸技术史专题研究之一[J]. 文物,1973(9):45-51.
PAN J X. On the origin of paper making—one of the special studies on the history of paper making technology in ancient China[J]. Cultural Relics, 1973(9): 45-51. (in Chinese)
|
潘吉星. 故宫博物院藏若干古代法书用纸之研究——中国古代造纸技术史专题研究之三[J]. 文物,1975(10):84-88.
PAN J X. Research on the collection of some ancient calligraphic papers in the palace museum—the third part of the special studies on the history of paper making technology in ancient China[J]. Cultural Relics, 1975(10): 84-88. (in Chinese)
|
潘吉星. 中国古代加工纸十种——中国古代造纸技术史专题研究之五[J]. 文物,1979(2):38-48.
PAN J X. Ten kinds of ancient Chinese processing papers—the fifth part of the special studies on the history of paper making technology in ancient China[J]. Cultural Relics, 1979(2): 38-48. (in Chinese)
|
汤书昆. 中国手工纸文库-云南卷[M]. 合肥: 中国科学技术大学出版社, 2019.
TANG SH K. Library of Chinese Handmade Paper-Yunnan[M]. Hefei: University of Science and Technology of China Press, 2019. (in Chinese)
|
易晓辉. 我国古纸及传统手工纸纤维原料分类方法研究[J]. 中国造纸,2015,34(10):76-80. doi: 10.11980/j.issn.0254-508X.2015.10.015
YI X H. Fibrous raw material taxonomies of Chinese ancient paper and traditional handmade paper[J]. China Pulp &Paper, 2015, 34(10): 76-80. (in Chinese) doi: 10.11980/j.issn.0254-508X.2015.10.015
|
王连科. 中国古代造纸工艺流程的演变[J]. 黑龙江造纸,2009,37(4):63-64. doi: 10.3969/j.issn.1673-0283.2009.04.022
WANG L K. The evolution of ancient Chinese paper making process[J]. Heilongjiang Pulp &Paper, 2009, 37(4): 63-64. (in Chinese) doi: 10.3969/j.issn.1673-0283.2009.04.022
|
王伟, 方晓阳. 中国古代松烟墨制作工艺源流[J]. 出版与印刷,2010(1):21-25. doi: 10.3969/j.issn.1007-1938.2010.01.007
WANG W, FANG X Y. The process origin of pine black ink in ancient China[J]. Publishing &Printing, 2010(1): 21-25. (in Chinese) doi: 10.3969/j.issn.1007-1938.2010.01.007
|
王伟, 方晓阳. 中国古代制墨与中药关系的初步研究[J]. 中国当代医药,2010,17(6):12-14.
WANG W, FANG X Y. Preliminary study on the relationship between ancient Chinese ink making and traditional Chinese Medicine[J]. China Modern Medicine, 2010, 17(6): 12-14. (in Chinese)
|
TOMASINI E P, HALAC E B, REINOSO M, et al. Micro-Raman spectroscopy of carbon-based black pigments[J]. Journal of Raman Spectroscopy, 2012, 43(11): 1671-1675. doi: 10.1002/jrs.4159
|
所桂萍. 印泥演变探究[J]. 档案,2001(2):28-29. doi: 10.3969/j.issn.1004-2733.2001.02.028
SUO G P. The development of stamp-pad ink[J]. Archives, 2001(2): 28-29. (in Chinese) doi: 10.3969/j.issn.1004-2733.2001.02.028
|
袁田. 印章、印泥与印谱之间的关系流变[J]. 西部皮革,2016,38(8):284. doi: 10.3969/j.issn.1671-1602.2016.08.240
YUAN T. The relationship between seal, ink and print[J]. West Leather, 2016, 38(8): 284. (in Chinese) doi: 10.3969/j.issn.1671-1602.2016.08.240
|
周国信. 我国古代颜料漫谈(一)[J]. 涂料工业,1990(4):43-48.
ZHOU G X. On the Chinese ancient pigments[J]. Paint &Coatings Industry, 1990(4): 43-48. (in Chinese)
|
周国信. 我国古代颜料漫谈(二)[J]. 涂料工业,1991(1):30-36.
ZHOU G X. Ancient pigments in China[J]. Paint &Coatings Industry, 1991(1): 30-36. (in Chinese)
|
何秋菊. 文物色彩分析与保护[M]. 北京: 北京燕山出版社, 2018.
HE Q J. Analysis and Protection of Cultural Relics Color[M]. Beijing: Beijing Yanshan Press, 2018. (in Chinese)
|
龚德才. 文物保护基础理论[M]. 合肥: 中国科学技术大学出版社, 2019.
GONG D C. Basic Theory in Conservation[M]. Hefei: University of Science and Technology of China Press, 2019. (in Chinese)
|
王琎. 文物摄影中的透射光应用—光影魔术[J]. 大众考古,2015(8):74-76.
WANG J. The application of transmitted light in cultural relic photography—magic of light and shadow[J]. Popular Archaeology, 2015(8): 74-76. (in Chinese)
|
须田牧子. 《倭寇图卷》再考[J]. 彭浩, 译. 中国国家博物馆馆刊, 2011(2): 34-46.
MAKIKO S. Reconsideration of the Wako-zukan[J]. PENG H, trans. Journal of National Museum of China, 2011(2): 34-46. (in Chinese)
|
潘怡伶. 张大千画作修复案例分析[J]. 内江师范学院学报,2019,34(11):58-63.
PAN Y L. Case analysis of Zhang Daqian's painting restoration[J]. Journal of Neijiang Normal University, 2019, 34(11): 58-63. (in Chinese)
|
张群喜. 紫外荧光成像技术在馆藏壁画保护研究中的应用[J]. 文博,2019(6):222-228.
ZHANG Q X. The application of UVF photography techniques in research of conservation of wall paintings[J]. Relics and Museology, 2019(6): 222-228. (in Chinese)
|
丁忠明, 吴来明, 孔凡公. 文物保护科技研究中的X射线照相技术[J]. 文物保护与考古科学,2006,18(1):38-46. doi: 10.3969/j.issn.1005-1538.2006.01.008
DING ZH M, WU L M, KONG F G. X-ray radiography in scientific conservation[J]. Sciences of Conservation and Archaeology, 2006, 18(1): 38-46. (in Chinese) doi: 10.3969/j.issn.1005-1538.2006.01.008
|
DENKER A, KLEINERT K, LAURENZE-LANDSBERG C, et al. The genesis of Jan Steens painting “As the old ones sing, so the young ones pipe” from the Gemäldegalerie Berlin[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2011, 651(1): 273-276.
|
阎春生, 廖延彪, 田芊. 层析成像图像重建算法综述[J]. 中国光学,2013,6(5):617-632.
YAN CH SH, LIAO Y B, TIAN Q. Image reconstruction algorithms of computed tomography[J]. Chinese Optics, 2013, 6(5): 617-632. (in Chinese)
|
BETTUZZI M, ALBERTIN F, BRANCACCIO R, et al. X-ray computed tomography applied to investigate ancient manuscripts[J]. IL Nuovo Cimento C, 2017, 40(2): 102.
|
周萍, 齐扬, 李赜宇, 等. 太赫兹技术在文化遗产领域的应用进展[J]. 文物保护与考古科学,2016,28(4):133-143.
ZHOU P, QI Y, LI Z Y, et al. Application of terahertz technology in culture heritage conservation[J]. Sciences of Conservation and Archaeology, 2016, 28(4): 133-143. (in Chinese)
|
ABRAHAM E, FUKUNAGA K. Terahertz imaging applied to the examination of artistic objects[J]. Studies in Conservation, 2015, 60(6): 343-352. doi: 10.1179/2047058414Y.0000000146
|
ZHANG ZH W, WANG K J, LEI Y, et al. Non-destructive detection of pigments in oil painting by using terahertz tomography[J]. Science China Physics,Mechanics &Astronomy, 2015, 58(12): 124202.
|
ABRAHAM E, YOUNUS A, DELAGNES J C, et al.. Terahertz-pulse imaging for non-destructive analysis of layered art paintings[C]. Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves, IEEE, 2010.
|
TARGOWSKI P, IWANICKA M. Optical Coherence Tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review[J]. Applied Physics A, 2012, 106(2): 265-277. doi: 10.1007/s00339-011-6687-3
|
LIANG H D, CID M G, CUCU R G, et al. En-face optical coherence tomography–a novel application of non-invasive imaging to art conservation[J]. Optics Express, 2005, 13(16): 6133-6144. doi: 10.1364/OPEX.13.006133
|
杨珊珊, 朱锐, 米磊, 等. 光学相干层析成像技术对壁画的检测研究[J]. 光学学报,2015,35(5):0511005. doi: 10.3788/AOS201535.0511005
YANG SH SH, ZHU R, MI L, et al. Application of optical coherence tomography in the detection of the mural[J]. Acta Optica Sinica, 2015, 35(5): 0511005. (in Chinese) doi: 10.3788/AOS201535.0511005
|
刘畅. 手工纸显微图像分析[M]. 北京: 清华大学出版社, 2016.
LIU CH. Microscopic Image Analysis of Handmade Paper[M]. Beijing: Tsinghua University Press, 2016. (in Chinese)
|
王菊华. 中国造纸原料纤维特性及显微图谱[M]. 北京: 中国轻工业出版社, 1999.
WANG J H. Papermaking raw Materials of China an Atlas of Micrographs and the Characteristics of Fibers[M]. Beijing: China Light Industry Press, 1999. (in Chinese)
|
易晓辉, 田周玲, 闫智培. 五种清代内府刻书用纸样品纤维显微分析与鉴别[J]. 文物保护与考古科学,2018,30(6):53-64.
YI X H, TIAN ZH L, YAN ZH P. Microscopic analysis and identification of five kinds of Qing Dynasty engraving papers[J]. Sciences of Conservation and Archaeology, 2018, 30(6): 53-64. (in Chinese)
|
马赞峰, 李最雄, 苏伯民, 等. 偏光显微镜在壁画颜料分析中的应用[J]. 敦煌研究,2002(4):33-37. doi: 10.3969/j.issn.1000-4106.2002.04.007
MA Z F, LI Z X, SU B M, et al. Application of polarized light microscope in the analysis of murals' pigments[J]. Dunhuang Research, 2002(4): 33-37. (in Chinese) doi: 10.3969/j.issn.1000-4106.2002.04.007
|
王艳玲. 西夏千佛龛唐卡的显微偏光及拉曼光谱分析[J]. 光散射学报,2018,30(2):150-155.
WANG Y L. Analysis and study of the Tangka of Xixia thousand Buddha niches[J]. The Journal of Light Scattering, 2018, 30(2): 150-155. (in Chinese)
|
陈凯, 张英春, 赵关芳. 延展显微镜成像技术及其应用[J]. 分析化学,2019,47(5):643-651. doi: 10.1016/S1872-2040(19)61156-4
CHEN K, ZHANG Y CH, ZHAO G F. Expansion microscopy imaging technique and its application[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5): 643-651. (in Chinese) doi: 10.1016/S1872-2040(19)61156-4
|
惠娜, 王亮, 王春燕, 等. 扫描电子显微镜及能谱仪在彩绘文物分析中的应用[J]. 文博,2015(1):99-103. doi: 10.3969/j.issn.1000-7954.2015.01.019
HUI N, WANG L, WANG CH Y, et al. The applications of the scanning electron microscope and energy dispersive spectrometer in the analyses of the color-painted cultural relics[J]. Relics and Museology, 2015(1): 99-103. (in Chinese) doi: 10.3969/j.issn.1000-7954.2015.01.019
|
陈港泉, 胡红岩, 李燕飞, 等. 莫高窟壁画疱疹病害的微观形貌和成分研究[J]. 表面技术,2016,45(10):162-167.
CHEN G Q, HU H Y, LI Y F, et al. Micro-morphology and composition of mural herpes in Mogao Grottoes[J]. Surface Technology, 2016, 45(10): 162-167. (in Chinese)
|
GÓMEZ-JERIA J S, CLAVIJO1 E, GUTIÉRREZ S. An infrared, SEM and XRF study of the paper OFA 1588 Spanish book[J]. Research Journal of Pharmaceutical,Biological and Chemical Sciences, 2018, 9(4): 1581-1590.
|
HASWELL R, ZEILE U, MENSCH K. Van Gogh’s painting grounds: an examination of barium sulphate extender using analytical electron microscopy–SEM/FIB/TEM/EDX[J]. Microchimica Acta, 2008, 161(3): 363-369.
|
曹雪筠, 杨军, 方晓阳, 等. 江西南昌雷鋽墓出土墨锭的分析研究[J]. 南方文物,2011(2):154-157. doi: 10.3969/j.issn.1004-6275.2011.02.025
CAO X J, YANG J, FANG X Y, et al. Analysis and study on ink stick excavated from Leitiao Tomb in Nanchang, Jiangxi Province[J]. Cultural Relics in Southern China, 2011(2): 154-157. (in Chinese) doi: 10.3969/j.issn.1004-6275.2011.02.025
|
张蕊. 纸质文物用纳米抑菌剂研究[J]. 中国国家博物馆馆刊,2014(3):145-152.
ZHANG R. Nano bacteriostasis in paper preservation[J]. Journal of National Museum of China, 2014(3): 145-152. (in Chinese)
|
REN D, WANG H K, YU Z X, et al. Mechanical imaging of bamboo fiber cell walls and their composites by means of peakforce quantitative nanomechanics (PQNM) technique[J]. Holzforschung, 2015, 69(8): 975-984. doi: 10.1515/hf-2014-0237
|
陈红, 吴智慧, 费本华. 利用原子力显微镜表征竹纤维细胞壁横截面结构[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 139-143.
CHEN H, WU ZH H, FEI B H. The cross section structure characteristics of bamboo cell wall with an atomic force microscope[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(2): 139-143. (in Chinese)
|
MORSCH S, VAN DRIEL B A, VAN DEN BERG K J, et al. Investigating the photocatalytic degradation of oil paint using ATR-IR and AFM-IR[J]. ACS Applied Materials &Interfaces, 2017, 9(11): 10169-10179.
|
PIANTANIDA G, BICCHIERI M, COLUZZA C. Atomic force microscopy characterization of the ageing of pure cellulose paper[J]. Polymer, 2005, 46(26): 12313-12321. doi: 10.1016/j.polymer.2005.10.015
|
DEGANO I. Liquid chromatography: current applications in heritage science and recent developments[J]. Physical Sciences Reviews, 2018, 4(5): 20180009.
|
DEGANO I, LA NASA J. Trends in high performance liquid chromatography for cultural heritage[J]. Topics in Current Chemistry, 2016, 374(2): 20. doi: 10.1007/s41061-016-0020-8
|
陈劲柏. Gellan水凝胶在古纸清洁处理中的应用[J]. 国际造纸,2015,34(1):41-47.
CHEN J B. Gellan hydrogel as a powerful tool in paper cleaning process: a detailed study[J]. World Pulp and Paper, 2015, 34(1): 41-47. (in Chinese)
|
常建华, 董绮功. 波谱原理及解析[M]. 3版. 北京: 科学出版社, 2012.
CHANG J H, DONG Q G. Spectrum Principle and Analysis[M]. 3rd ed. Beijing: Science Press, 2012. (in Chinese)
|
郭项雨, 黄雪梅, 翟俊峰, 等. 原位电离小型便携式质谱的研究进展[J]. 分析化学,2019,47(3):335-346. doi: 10.1016/S1872-2040(19)61145-X
GUO X Y, HUANG X M ZHAI J F, et al. Research advances in ambient ionization and miniature mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 335-346. (in Chinese) doi: 10.1016/S1872-2040(19)61145-X
|
李佳佳, 张秉坚. 古代彩绘文物中的胶结物研究现状——基于Web of Science数据库研究论文的定量统计分析[J]. 文物保护与考古科学,2019,31(5):119-129.
LI J J, ZHANG B J. Research status of binders in ancient painted cultural relics—based on data analysis of research papers from the Web of Science[J]. Sciences of Conservation and Archaeology, 2019, 31(5): 119-129. (in Chinese)
|
王娜, 谷岸, 闵俊嵘, 等. 文物中常用蛋白质类胶结材料的热裂解-气相色谱/质谱识别[J]. 分析化学, 2020, 48(1): 90-96.
WANG N, GU A, MIN J R, et al.. Identification of protein binding media used in Chinese cultural relics by pyrolysis-gas chromatography/mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 90-96. (in Chinese)
|
王子铭, 王丽琴, 马珍珍, 等. 文物蛋白胶料的气相色谱-质谱分析方法探讨[J]. 质谱学报,2019,40(4):335-341. doi: 10.7538/zpxb.2018.0148
WANG Z M, WANG L Q, MA ZH ZH, et al. Methodological study of proteinaceous binders in artworks by GC-MS[J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(4): 335-341. (in Chinese) doi: 10.7538/zpxb.2018.0148
|
吴晨, 王丽琴, 杨璐, 等. 气相色谱-质谱分析在文物有机物鉴定中的应用[J]. 分析化学,2013,41(11):1773-1779. doi: 10.1016/S1872-2040(13)60693-3
WU CH, WANG L Q, YANG L, et al. Application of gas chromatography-mass spectrometry for identification of organic compounds in cultural relics[J]. Chinese Journal of Analytical Chemistry, 2013, 41(11): 1773-1779. (in Chinese) doi: 10.1016/S1872-2040(13)60693-3
|
杨璐, 黄建华, 申茂盛, 等. 秦始皇兵马俑彩绘胶料的气相色谱-质谱联用分析[J]. 分析化学,2019,47(5):695-701.
YANG L, HUANG J H, SHEN M SH, et al. Analysis of binding media of polychrome terracotta and horses of Qin Shihuang by gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5): 695-701. (in Chinese)
|
周旸, 贾丽玲, 刘剑. 新疆帕米尔吉尔赞喀勒拜火教墓地出土纺织品分析检测[J]. 文物保护与考古科学,2019,31(4):55-64.
ZHOU Y, JIA L L, LIU J. Scientific research on the textiles excavated from a Zoroastrian cemetery in Pamir[J]. Sciences of Conservation and Archaeology, 2019, 31(4): 55-64. (in Chinese)
|
魏益民, 郭波莉, 任满宽. 甘肃民乐东灰山遗址炭化小麦籽粒性状分析[J]. 麦类作物学报,2018,38(11):1330-1337. doi: 10.7606/j.issn.1009-1041.2018.11.09
WEI Y M, GUO B L, REN M K. Study on the kernel properties of carbonized Wheat in Donghui Hill of Minle in Gansu Province[J]. Journal of Triticeae Crops, 2018, 38(11): 1330-1337. (in Chinese) doi: 10.7606/j.issn.1009-1041.2018.11.09
|
何秋菊, 王菊琳, 许昆. 古书画脱酸用中草药生物碱的提取及脱酸效果评估[J]. 中国文物科学研究,2019(2):57-66. doi: 10.3969/j.issn.1674-9677.2019.02.009
HE Q J, WANG J L, XU K. Extraction of Chinese herbal medicine alkaloidsfor deacidification of ancient calligraphy and painting and evaluation of deacidification effect[J]. China Cultural Heritage Scientific Research, 2019(2): 57-66. (in Chinese) doi: 10.3969/j.issn.1674-9677.2019.02.009
|
何秋菊, 王丽琴. 用于传统书画修复的不同加热温度豆浆水中大豆蛋白的疏水性分析[J]. 分析化学,2018,46(11):1845-1850. doi: 10.11895/j.issn.0253-3820.171081
HE Q J, WANG L Q. Hydrophobicity analysis of soy protein in soybean water with different heating temperatures during painting and calligraphy restoration[J]. Chinese Journal of Analytical Chemistry, 2018, 46(11): 1845-1850. (in Chinese) doi: 10.11895/j.issn.0253-3820.171081
|
AMADOR V S, PEREIRA H V, SENA M M, et al. Paper spray mass spectrometry for the forensic analysis of black ballpoint pen inks[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(9): 1965-1976. doi: 10.1007/s13361-017-1686-z
|
魏乐, 陈文佳, 周海宽. 粉笺纸染色工艺初探[J]. 中国文物科学研究,2018(1):77-80. doi: 10.3969/j.issn.1674-9677.2018.01.013
WEI L, CHEN W J, ZHOU H K. Preliminary study on dyeing process of powder paper[J]. China Cultural Heritage Scientific Research, 2018(1): 77-80. (in Chinese) doi: 10.3969/j.issn.1674-9677.2018.01.013
|
BENETTI F, MARCHETTINI N, ATREI A. ToF-SIMS and XPS study of ancient papers[J]. Applied Surface Science, 2011, 257(6): 2142-2147. doi: 10.1016/j.apsusc.2010.09.063
|
ZOLEO A, VECCHIA F, BRUSTOLON M. Characterization of ancient and modern papers by CW-EPR spectroscopy[J]. Applied Magnetic Resonance, 2009, 35(2): 213-220. doi: 10.1007/s00723-008-0155-z
|
ZOLEO A, CONFORTIN D, MINA N D, et al. The role of metal ions in the study of ancient paper by electron paramagnetic resonance[J]. Applied Magnetic Resonance, 2010, 39(3): 215-223. doi: 10.1007/s00723-010-0149-5
|
JAVIER S, HORNAK J P. A nondestructive method of identifying pigments on canvas using low frequency electron paramagnetic resonance spectroscopy[J]. Journal of the American Institute for Conservation, 2018, 57(1-2): 73-82. doi: 10.1080/01971360.2018.1480135
|
CAPITANI D, DI TULLIO V, PROIETTI N. Nuclear magnetic resonance to characterize and monitor cultural heritage[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2012, 64: 29-69. doi: 10.1016/j.pnmrs.2011.11.001
|
CORSARO C, MALLAMACE D, ŁOJEWSKA J, et al. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy[J]. Scientific Reports, 2013, 3: 2896. doi: 10.1038/srep02896
|
CORSARO C, MALLAMACE D, VASI S, et al. The role of water in the degradation process of paper using 1H HR-MAS NMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2016, 18(48): 33335-33343. doi: 10.1039/C6CP06601A
|
DI TULLIO V, ZUMBULYADIS N, CENTENO S A, et al. Water diffusion and transport in oil paints as studied by unilateral NMR and 1H high-resolution MAS-NMR spectroscopy[J]. Chem. Phys. Chem., 2020, 21(1): 113-119. doi: 10.1002/cphc.201900858
|
王芬, 施佩, 罗宏杰, 等. 五代耀州窑天青瓷的研究[J]. 文物保护与考古科学,2018,30(5):15-23.
WANG F, SHI P, LUO H J, et al. Research on the sky-green porcelains from the Five-Dynasty Yaozhou Kiln[J]. Sciences of Conservation and Archaeology, 2018, 30(5): 15-23. (in Chinese)
|
陈善华, 刘思维, 孙杰. 青铜文物的光电子能谱分析[J]. 材料保护,2007,40(2):67-70. doi: 10.3969/j.issn.1001-1560.2007.02.022
CHEN SH H, LIU S W, SUN J. Elemental compositions and chemical states of corrosion products of bronze ware cultural relics studied by X-ray photoelectron spectroscopy[J]. Materials Protection, 2007, 40(2): 67-70. (in Chinese) doi: 10.3969/j.issn.1001-1560.2007.02.022
|
李浩淼, 孙红燕, 秦颍, 等. 安徽博物院所藏7幅潘玉良油画矿物色料的组成分析[J]. 文物保护与考古科学,2017,29(6):112-117.
LI H M, SUN H Y, QIN Y, et al. Pigment analysis from seven oil paintings by PAN Yu-liang collected at the Anhui Museum[J]. Sciences of Conservation and Archaeology, 2017, 29(6): 112-117. (in Chinese)
|
HAJJI L, BOUKIR A, ASSOUIK J, et al. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM–EDS)[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 136: 1038-1046. doi: 10.1016/j.saa.2014.09.127
|
许昆, 王菊琳, 何秋菊. 胶矾水中明矾对宣纸中纤维素、碳酸钙和明胶的影响[J]. 光谱学与光谱分析,2018,38(6):1829-1833.
XU K, WANG J L, HE Q J. The influence of alum in alum gelatin solution on cellulose, calcium carbonate and gelatin in Xuan Paper[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1829-1833. (in Chinese)
|
宋纪蓉. 故宫文物医院——改革开放四十年献礼[J]. 故宫博物院院刊,2018(6):6-22.
SONG J R. The palace museum workshop and crafts review[J]. Palace Museum Journal, 2018(6): 6-22. (in Chinese)
|
WALTER P, SARRAZIN P, GAILHANOU M, et al. Full-field XRF instrument for cultural heritage: application to the study of a Caillebotte painting[J]. X-Ray Spectrometry, 2019, 48(4): 274-281. doi: 10.1002/xrs.2841
|
王迁, 郑行望. 荧光纳米复合膜的制备及青铜器表面氯离子的荧光传感分析[J]. 陕西师范大学学报(自然科学版),2013,41(1):47-52.
WANG Q, ZHENG X W. The fabrication of fluorescent nanocomposite film and its application for probing chloride ions on the surface of bronze wares[J]. Journal of Shaanxi Normal University (Natural Science Edition)
|
ZHANG H, WANG SH, CHANG K K, et al. Optical characterization of paper aging based on Laser-Induced Fluorescence (LIF) spectroscopy[J]. Applied Spectroscopy, 2018, 72(6): 913-920. doi: 10.1177/0003702818761669
|
ŁOJEWSKA J, RABIN I, PAWCENIS D, et al. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools[J]. Scientific Reports, 2017, 7: 46236. doi: 10.1038/srep46236
|
孙兰香, 汪为, 田雪咏, 等. 激光诱导击穿光谱微区分析的研究应用进展[J]. 分析化学,2018,46(10):1518-1527. doi: 10.11895/j.issn.0253-3820.181150
SUN L X, WANG W, TIAN X Y, et al. Progress in research and application of micro-laser-induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1518-1527. (in Chinese) doi: 10.11895/j.issn.0253-3820.181150
|
BOTTO A, CAMPANELLA B, LEGNAIOLI S, et al. Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(1): 81-103. doi: 10.1039/C8JA00319J
|
李合, 李晨毓, 翟毅, 等. 明早期官窑青花瓷器所用钴料的产地特征和晕散成因分析[J]. 文物保护与考古科学,2018,30(6):30-36.
LI H, LI CH Y, ZHAI Y, et al. Study on the origin and diffusion of cobalt materials used in early Ming Dynasty blue-and-white porcelains[J]. Sciences of Conservation and Archaeology, 2018, 30(6): 30-36. (in Chinese)
|
RZECKI K, SOŚNICKI T, BARAN M, et al. Application of computational intelligence methods for the automated identification of paper-ink samples based on LIBS[J]. Sensors, 2018, 18(11): 3670. doi: 10.3390/s18113670
|
饶刚福, 黄林, 刘木华, 等. 基于激光诱导击穿光谱的微生物种类鉴别研究[J]. 分析化学,2018,46(7):1122-1128. doi: 10.11895/j.issn.0253-3820.171448
RAO G F, HUANG L, LIU M H, et al. Discrimination of microbe species by laser induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1122-1128. (in Chinese) doi: 10.11895/j.issn.0253-3820.171448
|
裔传臻. 拉曼光谱在纸质文物研究中的应用[J]. 文物保护与考古科学,2018,30(3):135-141.
YI CH ZH. Applications of Raman spectroscopy to the analysis of paper relics[J]. Sciences of Conservation and Archaeology, 2018, 30(3): 135-141. (in Chinese)
|
马建锋, 杨淑敏, 田根林, 等. 拉曼光谱在天然纤维素结构研究中的应用进展[J]. 光谱学与光谱分析,2016,36(6):1734-1739.
MA J F, YANG SH M, TIAN G L, et al. Study on the application of raman spectroscopy to the research on natural cellulose structure[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1734-1739. (in Chinese)
|
金克霞, 王坤, 崔贺帅, 等. 拉曼光谱在木质素研究中的应用进展[J]. 林业科学,2018,54(3):144-151.
JIN K X, WANG K, CUI H SH, et al. Application of Raman spectroscopy to the research on lignin[J]. Scientia Silvae Sinicae, 2018, 54(3): 144-151. (in Chinese)
|
CHIRIU D, RICCI P C, CAPPELLINI G, et al. Ancient and modern paper: study on ageing and degradation process by means of portable NIR μ-Raman spectroscopy[J]. Microchemical Journal, 2018, 138: 26-34. doi: 10.1016/j.microc.2017.12.024
|
CHIRIU D, RICCI P C, CAPPELLINI G, et al. Ageing of ancient paper: a kinetic model of cellulose degradation from Raman spectra[J]. Journal of Raman Spectroscopy, 2018, 49(11): 1802-1811. doi: 10.1002/jrs.5462
|
COCCATO A, JEHLICKA J, MOENS L, et al. Raman spectroscopy for the investigation of carbon-based black pigments[J]. Journal of Raman Spectroscopy, 2015, 46(10): 1003-1015. doi: 10.1002/jrs.4715
|
陈彪, 张美丽, 李金海. 拉曼光谱法在纸张分析中的应用[J]. 光谱实验室,2012,29(2):718-720. doi: 10.3969/j.issn.1004-8138.2012.02.017
CHEN B, ZHANG M L, LI J H. Application of Raman spectra in paper analysis[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(2): 718-720. (in Chinese) doi: 10.3969/j.issn.1004-8138.2012.02.017
|
CEGLIA A, NUYTS G, MEULEBROECK W, et al. Iron speciation in soda-lime-silica glass: a comparison of XANES and UV-vis-NIR spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(7): 1552-1561. doi: 10.1039/C5JA00046G
|
ZHU J, YANG Y M, XU W, et al. Study of an archeological opaque red glass bead from China by XRD, XRF, and XANES[J]. X-Ray Spectrometry, 2012, 41(6): 363-366. doi: 10.1002/xrs.2411
|
MONICO L, JANSSENS K, ALFELD M, et al. Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(3): 613-626. doi: 10.1039/C4JA00419A
|
ZANELLA L, CASADIO F, GRAY K A, et al. The darkening of zinc yellow: XANES speciation of chromium in artist's paints after light and chemical exposures[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(5): 1090-1097. doi: 10.1039/c0ja00151a
|
VAN DER SNICKT G, JANSSENS K, DIK J, et al. Combined use of synchrotron radiation based micro-X-ray Fluorescence, Micro-X-ray Diffraction, Micro-X-ray absorption near-edge, and Micro-Fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by van Gogh[J]. Analytical Chemistry, 2012, 84(23): 10221-10228. doi: 10.1021/ac3015627
|
马建峰, 杨淑敏, 田根林, 等. 植物细胞壁木质素区域化学紫外显微光谱研究进展[J]. 林产化学与工业,2016,36(1):147-154. doi: 10.3969/j.issn.0253-2417.2016.01.021
MA J F, YANG SH M, TIAN G L, et al. Application of UV–microspectro photometry on lignin topochemistry in plant cell wall[J]. Chemistry and Industry of Forest Products, 2016, 36(1): 147-154. (in Chinese) doi: 10.3969/j.issn.0253-2417.2016.01.021
|
KUMAR R, KUMAR V, SHARMA V. Discrimination of various paper types using diffuse reflectance ultraviolet–visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents[J]. Applied Spectroscopy, 2015, 69(6): 714-720. doi: 10.1366/14-07663
|
李俊锋, 万晓霞. 可见光谱法无损识别壁画文物矿物质颜料的研究[J]. 光谱学与光谱分析,2018,38(1):200-204.
LI J F, WAN X X. Non-destructive identification of mineral pigments in ancient murals by visible spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 200-204. (in Chinese)
|
李广华, 陈垚, 马越, 等. 光纤反射光谱在彩绘文物颜料鉴别中的应用研究[J]. 文物保护与考古科学,2018,30(6):96-105.
LI G H, CHEN Y, MA Y, et al. The use of fiber optic reflectance spectroscopy for identification of pigments on polychrome cultural relics[J]. Sciences of Conservation and Archaeology, 2018, 30(6): 96-105. (in Chinese)
|
DELANEY J K, THOURY M, ZEIBEL J G, et al. Visible and infrared imaging spectroscopy of paintings and improved reflectography[J]. Heritage Science, 2016, 4: 6. doi: 10.1186/s40494-016-0075-4
|
SAUZIER G, MCGANN J, LEWIS S M, et al. A study into the ageing and dating of blue ball tip inks on paper using in situ visible spectroscopy with chemometrics[J]. Analytical Methods, 2018, 10(47): 5613-5621. doi: 10.1039/C8AY01418C
|
曹艳萍, 徐超宇, 刘艳. 光谱分析法在文件检验中的应用进展[J]. 榆林学院学报,2018,28(6):1-5.
CAO Y P, XU CH Y, LIU Y. Application of spectroscopic analysis in documents examination[J]. Journal of Yulin University, 2018, 28(6): 1-5. (in Chinese)
|
谷岸. 近红外光谱结合化学计量学无损检测新技术在文物保护中的应用与展望[J]. 中国文物科学研究,2019(1):72-76.
GU A. Application and prospect of new techniques of near infrared spectroscopy combined with chemometric nondestructive testing in cultural relics protection[J]. China Cultural Heritage Scientific Research, 2019(1): 72-76. (in Chinese)
|
易晓辉, 龙堃, 任珊珊, 等. 近红外光谱无损检测技术在古籍纸张性能分析中的可行性研究[J]. 文物保护与考古科学,2018,30(3):21-32.
YI X H, LONG K, REN SH SH, et al. Feasibility study on the use of nondestructive near infrared testing technology for analysis of ancient paper[J]. Sciences of Conservation and Archaeology, 2018, 30(3): 21-32. (in Chinese)
|
刘雪云, 熊智新, 胡慕伊. 基于近红外光谱技术的纸浆原料快速分类[J]. 中国纸业,2010,31(24):33-36.
LIU X Y, XIONG ZH X, HU M Y. Rapid classification of raw materials for pulp based on near-infrared spectroscopy[J]. China Pulp &Paper Industry, 2010, 31(24): 33-36. (in Chinese)
|
谷岸, 沈伟. 近红外光谱结合化学计量学无损鉴定书画印泥研究[J]. 文物保护与考古科学,2013,25(2):59-64. doi: 10.3969/j.issn.1005-1538.2013.02.009
GU A, SHEN W. Nondestructive identification of Chinese seal-ink on paintings based on near-infrared spectroscopy and chemometric[J]. Sciences of Conservation and Archaeology, 2013, 25(2): 59-64. (in Chinese) doi: 10.3969/j.issn.1005-1538.2013.02.009
|
罗曦芸, 杜一平, 沈美华, 等. 红外光谱在纤维质文物材料鉴别中的应用研究[J]. 光谱学与光谱分析,2015,35(1):60-64. doi: 10.3964/j.issn.1000-0593(2015)01-0060-05
LUO X Y, DU Y P, SHEN M H. Investigation of fibrous cultural materials by infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(1): 60-64. (in Chinese) doi: 10.3964/j.issn.1000-0593(2015)01-0060-05
|
XIA J J, ZHANG J X, ZHAO Y T, et al. Fourier transform infrared spectroscopy and chemometrics for the discrimination of paper relic types[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 219: 8-14. doi: 10.1016/j.saa.2018.09.059
|
管理, 任萌, 徐长青, 等. 南昌西汉海昏侯墓出土古墨的科技分析[J]. 南方文物,2018(2):131-134. doi: 10.3969/j.issn.1004-6275.2018.02.016
GUAN L, REN M, XU CH Q, et al. Scientific and technological analysis on the ancient ink unearthed in the tomb of haihunhou, in the Western Han Dynasty, Nanchang[J]. Cultural Relics in Southern China, 2018(2): 131-134. (in Chinese) doi: 10.3969/j.issn.1004-6275.2018.02.016
|
黄凰, 秦颖, 刘江生. 襄樊菜越三国墓出土古墨测试分析[J]. 考古学报,2013(3):426-429.
HUANG H, QIN Y, LIU J SH. Test analysis of the ancient ink unearthed from the tomb of the Three Kingdoms in Caifan of XiangFan[J]. Acta Archaeologica Sinica, 2013(3): 426-429. (in Chinese)
|
徐文娟, 裔传臻, 褚昊, 等. 珂罗版印刷与传统书写墨迹的比较研究[J]. 文物保护与考古科学,2018,30(4):80-84.
XU W J, YI CH ZH, CHU H, et al. Comparative study of collotype printing ink and traditional Chinese ink[J]. Sciences of Conservation and Archaeology, 2018, 30(4): 80-84. (in Chinese)
|
袁友方, 吴海, 朱旭峰, 等. 多技术联用检验书画印泥[J]. 云南警官学院学报,2017(6):111-115. doi: 10.3969/j.issn.1672-6057.2017.06.022
YUAN Y F, WU H, ZHU X F, et al. Multi-technology combined inspection inkpad in painting and calligraphy[J]. Journal of Yunnan Police College, 2017(6): 111-115. (in Chinese) doi: 10.3969/j.issn.1672-6057.2017.06.022
|
LV J G, ZHANG W, FENG J M, et al. Discrimination of red inks in seals by Fourier transform infrared spectroscopy[J]. Analytical Letters, 2014, 47(8): 1392-1399. doi: 10.1080/00032719.2013.867502
|
FUKUNAGA K, HOSAKO I, OGAWA Y, et al.. THz spectroscopy for analysis of paintings[C]. 2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, IEEE, 2007: 715-718.
|
MISSORI M, PAWCENIS D, BAGNIUK J, et al. Quantitative diagnostics of ancient paper using THz time-domain spectroscopy[J]. Microchemical Journal, 2018, 142: 54-61. doi: 10.1016/j.microc.2018.06.010
|
武望婷, 张陈锋, 高爱东, 等. 基于高光谱技术对一幅清代画信息提取研究[J]. 文物保护与考古科学,2017,29(4):45-52.
WU W T, ZHANG CH F, GAO A D, et al. Hyperspectral study of a Qing dynasty painting[J]. Sciences of Conservation and Archaeology, 2017, 29(4): 45-52. (in Chinese)
|
史宁昌, 李广华, 雷勇, 等. 高光谱成像技术在故宫书画文物保护中的应用[J]. 文物保护与考古科学,2017,29(3):23-29.
SHI N CH, LI G H, LEI Y, et al. Hyperspectral imaging to Chinese paintings at the Palace Museum[J]. Sciences of Conservation and Archaeology, 2017, 29(3): 23-29. (in Chinese)
|
曲亮, 赵鹏, 段鸿莺, 等. 故宫藻井轩辕镜及配件的材料与工艺分析研究[J]. 文物保护与考古科学,2018,30(4):34-43.
QU L, ZHAO P, DUAN H Y, et al. Raw materials and manufacturing technology research on caisson ceiling Xuanyuan mirrors and accessories in the Forbidden City[J]. Sciences of Conservation and Archaeology, 2018, 30(4): 34-43. (in Chinese)
|
[1] | 空间引力波探测航天器光学测距噪声链路指标优化[J]. Chinese Optics. doi: 10.37188/CO.2024-0185 |
[2] | 垂直端面光波导形状缺陷的激光补偿[J]. Chinese Optics. doi: 10.37188/CO.2024-0220 |
[3] | Chao MEI, Ke Cheng, Xiao-wen YI, Cai-ying Fu, ZENG Ti-xian. 含非正则涡旋对的部分相干光束的空间相关奇点与轨道角动量谱[J]. Chinese Optics. doi: 10.37188/CO.EN.2025-0001 |
[4] | WANG Hua-xin, WANG Tong, XIONG Han. Measurement of orbital angular momentum of vortex beam by topological charge difference[J]. Chinese Optics, 2025, 18(2): 216-223. doi: 10.37188/CO.2024-0141 |
[5] | YIN Jian-xiong, WANG Jun, WANG Hao-xing, WAN Shun, LIU Jia, JIA Ping-gang. Silicon MEMS fiber-optic Fabry Perot pressure sensor for shock wave measurements[J]. Chinese Optics. doi: 10.37188/CO.2025-0010 |
[6] | CAO Zong-xin, QIAN Yi-long, LIU Yu-tong, LI Kun, LI Zi-fan, GONG Jun-hao, HU Wu-sheng, ZHANG Da-wei, HONG Rui-jin, MAO Hong-min, LU Huan-jun, FAN Li-na, CAO Zhao-liang. Research on pointing accuracy of liquid crystal phase array based on the variable period grating method[J]. Chinese Optics, 2025, 18(1): 29-41. doi: 10.37188/CO.2024-0097 |
[7] | 涡旋光束轨道角动量的十字线检测法[J]. Chinese Optics. doi: 10.37188/CO.2024-0209 |
[8] | LI Mao-yue, XU Sheng-bo, MENG Ling-qiang, LIU Zhi-cheng. An improved point cloud registration method based on the point-by-point forward method[J]. Chinese Optics, 2024, 17(4): 875-885. doi: 10.37188/CO.2023-0166 |
[9] | ZHOU Zhen-rui, ZHANG Guo-qiang, QIU Zong-jia, GUO Shao-peng, LI Qun, SHAO Jian, WU Peng, LU Yun-cai. An improved phase generated carrier demodulation algorithm of fiber optic fabry-perot sensor[J]. Chinese Optics, 2024, 17(2): 312-323. doi: 10.37188/CO.2023-0108 |
[10] | LI Chen-yu, HU Wen-zhe, ZHANG Xue-yan, LIU Han-wen, LIU Xiao-long, QU Liang, ZHU Meng, DUAN Hong-ying, Paraskevi Pouli. Application of dual-wavelength nanosecond laser cleaning technology on stone artifacts[J]. Chinese Optics, 2024, 17(5): 1050-1059. doi: 10.37188/CO.2024-0002 |
[11] | ZHU Jing-yi, YANG Peng-cheng, MENG Jie, ZHANG Jin-jing, CUI Jia-bao, DAI Yang. A point cloud classification downsampling and registration method for cultural relics based on curvature features[J]. Chinese Optics, 2024, 17(3): 572-579. doi: 10.37188/CO.2023-0115 |
[12] | YANG Peng-cheng, YANG Zhao, MENG Jie, XIAO Yuan, CUI Jia-bao. Aligning method for point cloud prism boundaries of cultural relics based on normal vector and faceted index features[J]. Chinese Optics, 2023, 16(3): 654-662. doi: 10.37188/CO.2022-0156 |
[13] | AN Qi-chang, JIANG Xi-wen, LI Hong-wen, TANG Jing. Detection of large aperture flat mirror based on the differential optics transfer function method[J]. Chinese Optics, 2022, 15(5): 992-999. doi: 10.37188/CO.2022-0122 |
[14] | TIAN Xiao, QI Bing, JIN Fa-cheng, HUANG Bao-yu, ZHANG Jun. Research on temperature field in high-power Nd: YAG single crystal fiber laser by analytical method[J]. Chinese Optics, 2020, 13(2): 258-265. doi: 10.3788/CO.20201302.0258 |
[15] | LI Chen-yu, QU Liang, GAO Fei, DUAN Hong-ying, GUAN Ming, LIU Han-wen, ZOU Fei-chi. Composition analysis of the surface and depth distribution of metal and ceramic cultural relics by laser-induced breakdown spectroscopy[J]. Chinese Optics, 2020, 13(6): 1239-1248. doi: 10.37188/CO.2020-0112 |
[16] | YANG Wen-bo, MA Tian-wei, LIU Jian. Elimination of impulse noise by non-local variation inpainting method[J]. Chinese Optics, 2013, 6(6): 876-884. doi: 10.3788/CO.20130606.876 |
[17] | FANG Qian-qian, FANG Wei, WANG Kai. Calculation of effective emissivity of blackbody cavities by Monte-Carlo method[J]. Chinese Optics, 2012, 5(2): 167-173. doi: 10.3788/CO.20120502.0167 |
[18] | WANG Xi-jun. Computation and comparison of laser speckle with sub-pixel measurement methods[J]. Chinese Optics, 2012, 5(6): 652-657. doi: 10.3788/CO.20120506.0652 |
[19] | SHAN Yun-xiao, CHEN Chang-zheng, LIU Lei, REN Jian-yue, WANG Bing. Design and analysis of flexure hinge by finite element method[J]. Chinese Optics, 2010, 3(2): 146-151. |
[20] | YUE Jin-ying, LIU Hua, XU Wen-bin, WANG Tai-sheng, LU Zhen-wu. Measurement of optical surface and foci of long focal length lens by CGH[J]. Chinese Optics, 2009, 2(6): 502-507. |
Sample | GaAs | Si | SiO2 |
Young's modulus(Pa) | 8.50×1010 | 1.77×1011 | 7.31×1010 |
Poisson's ratio | 0.31 | 0.2891 | 0.17 |
Density(kg/m3) | 5500 | 2328 | 2203 |
Coefficient of thermal expansion(1/K) | 6.40×10−6 | 2.60×10−6 | 5.50×10−7 |