Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
CHEN Xiao-dong, SHENG Jing, YANG Jin, CAI Huai-yu, JIN Hao. Ultrasound image segmentation based on a multi-parameter Gabor filter and multiscale local level set method[J]. Chinese Optics, 2020, 13(5): 1075-1084. doi: 10.37188/CO.2020-0025
Citation: CHEN Xiao-dong, SHENG Jing, YANG Jin, CAI Huai-yu, JIN Hao. Ultrasound image segmentation based on a multi-parameter Gabor filter and multiscale local level set method[J]. Chinese Optics, 2020, 13(5): 1075-1084. doi: 10.37188/CO.2020-0025

Ultrasound image segmentation based on a multi-parameter Gabor filter and multiscale local level set method

Funds:  Supported by 13th Five-Year support plan project (No. 2017YFC0109702, No. 2018YFC0116202)
More Information
  • Corresponding author: xdchen@tju.edu.cn
  • Received Date: 21 Feb 2020
  • Rev Recd Date: 03 Apr 2020
  • Available Online: 10 Sep 2020
  • Publish Date: 05 Oct 2020
  • To address the weakness and discontinuity of the edges and the uneven distribution of gray in ultrasonic images, an improved edge extraction algorithm based on a multi-parameter Gabor filter and multiscale local level set method is proposed. With the grayscale inhomogeneity of ultrasound images being regarded as texture in different directions, the directionalities of the Gabor wavelet are adopted to filter at different angles. An intermediate image is obtained to isolate the difference between each region and the background, which will allow the retention of the original image by maximizing it with a fusion method. The Gabor filter kernel with multi-center frequency meets the complex frequency distribution characteristics of ultrasound images, and the mean fusion method is used to maximize the information in the image while reducing noise influence. For the edge of the ultrasound image is weak and the grayscale is uneven, the local intensity clustering level set method is improved. A Gaussian convolution kernel template is applied with different variance sizes to fit the grayscale changes in different parts of the image. Testing the ultrasound images of a stomach show that correlation coefficient and sensitivity coefficient reaches 0.856 and 0.910, respectively, which is a 20.7% and 5% improvement over the traditional LIC algorithm, respectively. This method can satisfy the system requirements where non-contact, online, real-time, higher precision and rapid speed strong anti-jamming and stabilization are needed.

     

  • loading
  • [1]
    赵越, 毛友生. 食管肿瘤微创外科治疗进展[J]. 中华胃肠外科杂志,2018,21(1):112-117. doi: 10.3760/cma.j.issn.1671-0274.2018.01.019

    ZHAO Y, MAO Y SH. Advancement of minimally invasive esophagectomy[J]. Chinese Journal of Gastrointestinal Surgery, 2018, 21(1): 112-117. (in Chinese) doi: 10.3760/cma.j.issn.1671-0274.2018.01.019
    [2]
    LEEM G, CHUNG M J, PARK J Y, et al. Clinical value of contrast-enhanced harmonic endoscopic ultrasonography in the differential diagnosis of pancreatic and gallbladder masses[J]. Clinical Endoscopy, 2018, 51(1): 80-88. doi: 10.5946/ce.2017.044
    [3]
    KAMATA K, TAKENAKA M, KITANO M, et al. Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of submucosal tumors of the upper gastrointestinal tract[J]. Journal of Gastroenterology and Hepatology, 2017, 32(10): 1686-1692. doi: 10.1111/jgh.13766
    [4]
    王亚强, 陈波. 一种改进的各向异性扩散超声图像去噪算法[J]. 液晶与显示,2015,30(2):310-316. doi: 10.3788/YJYXS20153002.0310

    WANG Y Q, CHEN B. Improved anisotropic diffusion ultrasound image denoising algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(2): 310-316. (in Chinese) doi: 10.3788/YJYXS20153002.0310
    [5]
    SELVARANI S, RAJENDRAN P. Detection of renal calculi in ultrasound image using meta-heuristic support vector machine[J]. Journal of Medical Systems, 2019, 43(9): 300. doi: 10.1007/s10916-019-1407-1
    [6]
    SAHOO P K, SOLTANI S, WONG A K C. A survey of thresholding techniques[J]. Computer Vision,Graphics,and Image Processing, 1988, 41(2): 233-260. doi: 10.1016/0734-189X(88)90022-9
    [7]
    宁赛男, 朱明, 孙宏海, 等. 一种改进的Sobel自适应边缘检测的FPGA实现[J]. 液晶与显示,2014,29(3):395-402. doi: 10.3788/YJYXS20142903.0395

    NING S N, ZHU M, SUN H H, et al. Realization of improved Sobel adaptive edge detection algorithm based on FPGA[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(3): 395-402. (in Chinese) doi: 10.3788/YJYXS20142903.0395
    [8]
    RAJA N S M, FERNANDES S L, DEY N, et al.. Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation[J]. Journal of Ambient Intelligence and Humanized Computing, 2018(1): 1-12, doi: 10.1007/s12652-018-0854-8.
    [9]
    严加勇, 庄天戈. 医学超声图像分割技术的研究及发展趋势[J]. 北京生物医学工程, 2003, 22(1): 67-71.

    YAN J Y, ZHUANG T G, Research and development trend of medical ultrasonic image segmentation technology[J]. Beijing Biomedical Engineering, 2003, 22(1): 67-71. (in Chinese)
    [10]
    KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331. doi: 10.1007/BF00133570
    [11]
    毕晓君, 肖婧. 差分进化算法GVF Snake模型在PET图像分割中的应用[J]. 中国图象图形学报,2018,16(3):382-388.

    BI X J, XIAO J. Application of DE algorithm and improved GVF Snake model in segmentation of PET image[J]. Journal of Image and Graphics, 2018, 16(3): 382-388. (in Chinese)
    [12]
    OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation[J]. Journal of Computational Physics, 1988, 79(1): 12-49. doi: 10.1016/0021-9991(88)90002-2
    [13]
    王醒策, 张美霞, 武仲科, 等. 基于全局LBF水平集模型的脑血管层次粗分割[J]. 光学精密工程,2013,21(12):3283-3297. doi: 10.3788/OPE.20132112.3283

    WANG X C, ZHANG M X, WU ZH K, et al. Level coarse brain vessel segmentation based on global LBF model[J]. Optics and Precision Engineering, 2013, 21(12): 3283-3297. (in Chinese) doi: 10.3788/OPE.20132112.3283
    [14]
    刘建磊, 隋青美, 朱文兴. 结合概率密度函数和主动轮廓模型的磁共振图像分割[J]. 光学精密工程,2014,22(12):3435-3443. doi: 10.3788/OPE.20142212.3435

    LIU J L, SUI Q M, ZHU W X. MR image segmentation based on probability density function and active contour model[J]. Optics and Precision Engineering, 2014, 22(12): 3435-3443. (in Chinese) doi: 10.3788/OPE.20142212.3435
    [15]
    CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277. doi: 10.1109/83.902291
    [16]
    MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685. doi: 10.1002/cpa.3160420503
    [17]
    杨名宇. 基于改进Chan-Vese模型的图像分割[J]. 液晶与显示,2014,29(3):473-478. doi: 10.3788/YJYXS20142903.0473

    YANG M Y. Image segmentation based on improved Chan-Vese model[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(3): 473-478. (in Chinese) doi: 10.3788/YJYXS20142903.0473
    [18]
    卢小鹏, 李辉, 刘云杰, 等. 基于Chan-Vese模型的TFT-LCD Mura缺陷快速分割算法[J]. 液晶与显示,2014,29(1):146-151. doi: 10.3788/YJYXS20142901.0146

    LU X P, LI H, LIU Y J, et al. Algorithm for fast TFT-LCD Mura defect image segmentation based on Chan-Vese model[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(1): 146-151. (in Chinese) doi: 10.3788/YJYXS20142901.0146
    [19]
    LI CH M, KAO C Y, GORE J C, et al.. Implicit active contours driven by local binary fitting energy[C]. Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007.
    [20]
    LANKTON S, TANNENBAUM A. Localizing region-based active contours[J]. IEEE Transactions on Image Processing, 2008, 17(11): 2029-2039. doi: 10.1109/TIP.2008.2004611
    [21]
    LI CH M, HUANG R, DING ZH H, et al. A Level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016. doi: 10.1109/TIP.2011.2146190
    [22]
    赵杰, 祁永梅, 潘正勇. 结合边界和区域的水平集超声图像分割算法[J]. 激光杂志,2013,34(6):46-48. doi: 10.3969/j.issn.0253-2743.2013.06.019

    ZHAO J, QI Y M, PAN ZH Y. Ultrasound image segmentation method based on level set combined with boundary and region[J]. Laser Journal, 2013, 34(6): 46-48. (in Chinese) doi: 10.3969/j.issn.0253-2743.2013.06.019
    [23]
    梁思, 王雷, 杨晓冬. 一种血管约束的局部活动轮廓模型[J]. 液晶与显示,2016,31(7):686-694. doi: 10.3788/YJYXS20163107.0686

    LIANG S, WANG L, YANG X D. A novel vessel-constrained active contour with application to vessel segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(7): 686-694. (in Chinese) doi: 10.3788/YJYXS20163107.0686
    [24]
    SELVATHI D, BAMA S. Phase based distance regularized level set for the segmentation of ultrasound kidney images[J]. Pattern Recognition Letters, 2017, 86(C): 9-17.
    [25]
    XIONG X L, GUO Y, WANG Y Y, et al.. Kidney tumor segmentation in ultrasound images using adaptive sub-regional evolution level set models[J]. Journal of Biomedical Engineering, 2019, 36(6): 945-956.
    [26]
    ZHAO W CH, XU X Z, LIU P P, et al. The improved level set evolution for ultrasound image segmentation in the high-intensity focused ultrasound ablation therapy[J]. Optik, 2020, 202: 163669. doi: 10.1016/j.ijleo.2019.163669
    [27]
    高慧芳, 杨明. 一种改进的凸变分水平集模型在图像分割中的应用[J]. 现代电子技术,2017,40(11):72-75.

    GAO H F, YANG M. Application of an improved convex variational level-set model in image segmentation[J]. Modern Electronics Technique, 2017, 40(11): 72-75. (in Chinese)
    [28]
    LI CH M, XU CH Y, GUI CH F, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254. doi: 10.1109/TIP.2010.2069690
    [29]
    GABOR D. Theory of communication[J]. IEEE Pro., London, 1946, 93(73): 58.
    [30]
    汪维华. 视网膜图像分割算法研究[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2018.

    WANG W H. Research on the segmentation algorithm for retinal image[D]. Chongqing: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 2018. (in Chinese)
    [31]
    MARĈELJA S. Mathematical description of the responses of simple cortical cells[J]. Journal of the Optical Society of America, 1980, 70(11): 1297-1300. doi: 10.1364/JOSA.70.001297
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article views(1790) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return