Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
LI Di, MENG Li, QU Song-nan. Research progress on nitrogen-doped carbon nanodots[J]. Chinese Optics, 2020, 13(5): 899-918. doi: 10.37188/CO.2020-0035
Citation: LI Di, MENG Li, QU Song-nan. Research progress on nitrogen-doped carbon nanodots[J]. Chinese Optics, 2020, 13(5): 899-918. doi: 10.37188/CO.2020-0035

Research progress on nitrogen-doped carbon nanodots

Funds:  Supported by National Natural Science Foundation of China (No.61975200); Jilin Province Science and Technology Research Projects (No. 20170101191JC, No. 20180101190JC, No. 20170101042JC); the Youth Innovation Promotion Association of CAS (No. 2018252); NSFC's Excellent Young Scientists Fund (HK & Macau) (No. 61922091); Funded by University of Macau (No. SRG2019-00163-IAPME)
More Information
  • In recent years, carbon nanodot (CDs) have been widely researched due to their unique luminescent properties, good biocompatibility, low toxicity and high photostability. These characteristics invite potential applications in optoelectronic devices, visible light communication, tumor therapy, biological imaging and other fields. There are a variety of CDs according to the different starting materials and synthesis routes. In this paper, we will systematically review nitrogen-doped CDs synthesized from citric acid and urea as the main precursor materials in our group in recent years, discuss their physicochemical properties, explore the methods and principles of CDs energy band regulation, and introduce the application progress of CDs.

     

  • loading
  • XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h
    MEHTA A, MISHRA A, BASU S, et al. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production-A review[J]. Journal of Environmental Management, 2019, 250: 109486. doi: 10.1016/j.jenvman.2019.109486
    康倩文, 张国, 柴瑞涛, 等. 基于碳纳米点荧光增强检测铝离子[J]. 分析化学,2019,47(12):1901-1908.

    KANG Q W, ZHANG G, CHAI R T, et al. Synthesis of carbon nanodots for detection of aluminum ion with fluorescence enhancement[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1901-1908. (in Chinese)
    XU X W, ZHANG K, ZHAO L, et al. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation[J]. ACS Applied Materials &Interfaces, 2016, 8(48): 32706-32716.
    钟青梅, 黄欣虹, 覃庆敏, 等. 以碳量子点为过氧化物模拟酶的葡萄糖测定方法[J]. 分析化学,2018,46(7):1062-1068. doi: 10.11895/j.issn.0253-3820.171396

    ZHONG Q M, HUANG X H, QIN Q M, et al. Determination of glucose based on carbon quantum dots as peroxidase mimetic enzyme[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1062-1068. (in Chinese) doi: 10.11895/j.issn.0253-3820.171396
    CHEN A Y, LIANG W B, WANG H J, et al. Anodic electrochemiluminescence of carbon dots promoted by nitrogen doping and application to rapid cancer cell detection[J]. Analytical Chemistry, 2020, 92(1): 1379-1385. doi: 10.1021/acs.analchem.9b04537
    邓帅, 李雨珊, 段延芳, 等. 荧光碳点在脊椎类模式动物斑马鱼中的活体成像与毒理学研究[J]. 发光学报,2015,36(4):485-490. doi: 10.3788/fgxb20153604.0485

    DENG SH, LI Y SH, DUAN Y F, et al. Flourescent imaging and toxicology study of carbon dots in transparent zebrafishes[J]. Chinese Journal of Luminescence, 2015, 36(4): 485-490. (in Chinese) doi: 10.3788/fgxb20153604.0485
    XIONG Y, SCHNEIDER J, RECKMEIER C J, et al. Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots[J]. Nanoscale, 2017, 9(32): 11730-11738. doi: 10.1039/C7NR03648E
    YUAN F L, LI SH H, FAN Z T, et al. Shining carbon dots: synthesis and biomedical and optoelectronic applications[J]. Nano Today, 2016, 11(5): 565-586. doi: 10.1016/j.nantod.2016.08.006
    ZHOU ZH J, TIAN P F, LIU X Y, et al. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted, aggregation-enhanced emission for light-emitting devices and visible light communication[J]. Advanced Science, 2018, 5(8): 1800369. doi: 10.1002/advs.201800369
    ARDEKANI S M, DEHGHANI A, HASSAN M, et al. Two-photon excitation triggers combined chemo-photothermal therapy via doped carbon nanohybrid dots for effective breast cancer treatment[J]. Chemical Engineering Journal, 2017, 330: 651-662. doi: 10.1016/j.cej.2017.07.165
    SHI Y P, PAN Y, ZHONG J, et al. Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging[J]. Carbon, 2015, 93: 742-750. doi: 10.1016/j.carbon.2015.05.100
    姜杰, 李士浩, 严一楠, 等. 氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J]. 发光学报,2017,38(12):1567-1574. doi: 10.3788/fgxb20173812.1567

    JIANG J, LI SH H, YAN Y N, et al. Preparation of N-doped fluorescent carbon dots with high quantum yield for in-vitro bioimaging[J]. Chinese Journal of Luminescence, 2017, 38(12): 1567-1574. (in Chinese) doi: 10.3788/fgxb20173812.1567
    YAN X, CUI X, LI L SH. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. Journal of the American Chemical Society, 2010, 132(17): 5944-5945. doi: 10.1021/ja1009376
    李俊芬, 王冬秀, 李鹏霞, 等. 一步水热法合成荧光碳点检测锰(Ⅶ)[J]. 分析化学,2019,47(5):731-738.

    LI J F, WANG D X, LI P X, et al. One-step hydrothermal synthesis of carbon dots for detection of manganese (Ⅶ)[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5): 731-738. (in Chinese)
    KANG S H, MHIN S, HAN H, et al. Ultrafast method for selective design of graphene quantum dots with highly efficient blue emission[J]. Scientific Reports, 2016, 6: 38423. doi: 10.1038/srep38423
    DONG Y Q, PANG H CH, REN SH Y, et al. Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots[J]. Carbon, 2013, 64: 245-251. doi: 10.1016/j.carbon.2013.07.059
    杜方凯, 张慧, 谭学才, 等. 基于氮掺杂石墨烯量子点/硫化镉纳米晶电化学发光传感器检测硫化氢[J]. 分析化学,2020,48(2):240-247.

    DU F K, ZHANG H, TAN X C, et al. Detection of hydrogen sulfide based on nitrogen-doped graphene quantum dots/cadmium sulfide nanocrystals electrochemiluminescence sensor[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 240-247. (in Chinese)
    邹小波, 史永强, 郑悦, 等. 基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J]. 分析化学,2018,46(6):960-968. doi: 10.11895/j.issn.0253-3820.181096

    ZOU X B, SHI Y Q, ZHENG Y, et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese) doi: 10.11895/j.issn.0253-3820.181096
    曲松楠, 孙铭鸿, 田震, 等. 氮掺杂碳点的合成与应用[J]. 发光学报,2019,40(5):557-580. doi: 10.3788/fgxb20194005.0557

    QU S N, SUN M H, TIAN ZH, et al. Synthesis and application of nitrogen-doped carbon dots[J]. Chinese Journal of Luminescence, 2019, 40(5): 557-580. (in Chinese) doi: 10.3788/fgxb20194005.0557
    ZHU SH J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research, 2015, 8(2): 355-381. doi: 10.1007/s12274-014-0644-3
    ZHAI X Y, ZHANG P, LIU CH J, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chemical Communications, 2012, 48(64): 7955-7957. doi: 10.1039/c2cc33869f
    LI D, HAN D, QU S N, et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion[J]. Light:Science &Applications, 2016, 5(7): e16120.
    QU S N, SHEN D ZH, LIU X Y, et al. Highly luminescent carbon-nanoparticle-based materials: factors influencing photoluminescence quantum yield[J]. Particle &Particle Systems Characterization, 2014, 31(11): 1175-1182.
    QU S N, WANG X Y, LU Q P, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angewandte Chemie International Edition, 2012, 51(49): 12215-12218. doi: 10.1002/anie.201206791
    QU S N, LIU X Y, GUO X Y, et al. Amplified spontaneous green emission and lasing emission from carbon nanoparticles[J]. Advanced Functional Materials, 2014, 24(18): 2689-2695. doi: 10.1002/adfm.201303352
    SK M A, ANANTHANARAYANAN A, HUANG L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. Journal of Materials Chemistry C, 2014, 2(34): 6954-6960. doi: 10.1039/C4TC01191K
    QU S N, ZHOU D, LI D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering[J]. Advanced Materials, 2016, 28(18): 3516-3521. doi: 10.1002/adma.201504891
    BAO X, YUAN Y, CHEN J Q, et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration[J]. Light:Science &Applications, 2018, 7(1): 91.
    LI D, JING P T, SUN L H, et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots[J]. Advanced Materials, 2018, 30(13): 1705913. doi: 10.1002/adma.201705913
    ZHU X J, SU Q Q, FENG W, et al. Anti-Stokes shift luminescent materials for bio-applications[J]. Chemical Society Reviews, 2017, 46(4): 1025-1039. doi: 10.1039/C6CS00415F
    CHEN G Y, QIU H L, PRASAD P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chemical Reviews, 2014, 114(10): 5161-5214. doi: 10.1021/cr400425h
    LI D, LIANG CH, USHAKOVA E V, et al. Thermally activated upconversion near-infrared photoluminescence from carbon dots synthesized via microwave assisted exfoliation[J]. Small, 2019, 15(50): 1905050. doi: 10.1002/smll.201905050
    CHEN Y H, ZHENG M T, XIAO Y, et al. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission[J]. Advanced Materials, 2016, 28(2): 312-318. doi: 10.1002/adma.201503380
    OOYAMA Y, YOSHIKAWA S, WATANABE S, et al. Molecular design of novel non-planar heteropolycyclic fluorophores with bulky substituents: convenient synthesis and solid-state fluorescence characterization[J]. Organic &Biomolecular Chemistry, 2006, 4(18): 3406-3409.
    SUN M Y, QU S N, HAO ZH D, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites[J]. Nanoscale, 2014, 6(21): 13076-13081. doi: 10.1039/C4NR04034A
    ZHAI Y CH, ZHOU D, JING P T, et al. Preparation and application of carbon-nanodot@NaCl composite phosphors with strong green emission[J]. Journal of Colloid and Interface Science, 2017, 497: 165-171. doi: 10.1016/j.jcis.2017.03.007
    ZHOU D, ZHAI Y CH, QU S N, et al. Electrostatic assembly guided synthesis of highly luminescent carbon-nanodots@BaSO4 hybrid phosphors with improved stability[J]. Small, 2017, 13(6): 1602055. doi: 10.1002/smll.201602055
    LIU E SH, LI D, ZHOU X J, et al. Highly emissive carbon dots in solid state and their applications in light-emitting devices and visible light communication[J]. ACS Sustainable Chemistry &Engineering, 2019, 7(10): 9301-9308.
    ZHOU D, JING P T, WANG Y, et al. Carbon dots produced via space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states[J]. Nanoscale Horizons, 2019, 4(2): 388-395. doi: 10.1039/C8NH00247A
    SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science, 2015, 308(5726): 1274-1278.
    LIM S H, KO Y H, RODRIGUEZ C, et al. Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures[J]. Light:Science &Applications, 2016, 5(2): e16030.
    ZHAI Y CH, WANG Y, LI D, et al. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92[J]. Journal of Colloid and Interface Science, 2018, 528: 281-288. doi: 10.1016/j.jcis.2018.05.101
    TIAN ZH, TIAN P F, ZHOU X J, et al. Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication[J]. Nanoscale, 2019, 11(8): 3489-3494. doi: 10.1039/C9NR00224C
    ELGALA H, MESLEH R, HAAS H. Indoor optical wireless communication: potential and state-of-the-art[J]. IEEE Communications Magazine, 2011, 49(9): 56-62. doi: 10.1109/MCOM.2011.6011734
    CHUN H, CHIANG C J, MONKMAN A, et al. A study of illumination and communication using organic light emitting diodes[J]. Journal of Lightwave Technology, 2013, 31(22): 3511-3517. doi: 10.1109/JLT.2013.2284247
    MERUGA J M, CROSS W M, MAY P S, et al. Security printing of covert quick response codes using upconverting nanoparticle inks[J]. Nanotechnology, 2012, 23(39): 395201. doi: 10.1088/0957-4484/23/39/395201
    ZHANG X T, LI D, ZHOU D, et al. Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced luminescence[J]. RSC Advances, 2016, 6(83): 79620-79624. doi: 10.1039/C6RA11076B
    XU H, CHEN R F, SUN Q, et al. Recent progress in metal-organic complexes for optoelectronic applications[J]. Chemical Society Reviews, 2014, 43(10): 3259-3302. doi: 10.1039/C3CS60449G
    BAO X, USHAKOVA E V, LIU E SH, et al. On-Off switching of the phosphorescence signal in a carbon dot/polyvinyl alcohol composite for multiple data encryption[J]. Nanoscale, 2019, 11(30): 14250-14255. doi: 10.1039/C9NR05123F
    HONG G S, ANTARIS A L, DAI H J. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 2017, 1(1): 0010. doi: 10.1038/s41551-016-0010
    PANSARE V J, HEJAZI S, FAENZA W J, et al. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers[J]. Chemistry of Materials, 2012, 24(5): 812-827. doi: 10.1021/cm2028367
    FERNANDES N, RODRIGUES C F, MOREIRA A F, et al. Overview of the application of inorganic nanomaterials in cancer photothermal therapy[J]. Biomaterials Science, 2020, 8(11): 2990-3020. doi: 10.1039/D0BM00222D
    XU G Y, BAO X, CHEN J Q, et al. In vivo tumor photoacoustic imaging and photothermal therapy based on supra-(carbon nanodots)[J]. Advanced Healthcare Materials, 2019, 8(2): 1800995. doi: 10.1002/adhm.201800995
    ZHANG Q F, UCHAKER E, CANDELARIA S L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews, 2013, 42(7): 3127-3171. doi: 10.1039/c3cs00009e
    ZHANG X L, YANG H, GUO J L, et al. Nitrogen-doped hollow porous carbon nanospheres coated with MnO2 nanosheets as excellent sulfur hosts for Li-S batteries[J]. Nanotechnology, 2017, 28(47): 475401. doi: 10.1088/1361-6528/aa8f78
    WANG R H, XU CH H, SUN J, et al. Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties[J]. Scientific Reports, 2014, 4: 7171.
    ZHANG X T, ZHANG ZH Y, HU F, et al. Carbon-dots-derived 3D highly nitrogen-doped porous carbon framework for high-performance lithium ion storage[J]. ACS Sustainable Chemistry &Engineering, 2019, 7(11): 9848-9856.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views(3966) PDF downloads(388) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return