Citation: | LI Di, MENG Li, QU Song-nan. Research progress on nitrogen-doped carbon nanodots[J]. Chinese Optics, 2020, 13(5): 899-918. doi: 10.37188/CO.2020-0035 |
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h
|
MEHTA A, MISHRA A, BASU S, et al. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production-A review[J]. Journal of Environmental Management, 2019, 250: 109486. doi: 10.1016/j.jenvman.2019.109486
|
康倩文, 张国, 柴瑞涛, 等. 基于碳纳米点荧光增强检测铝离子[J]. 分析化学,2019,47(12):1901-1908.
KANG Q W, ZHANG G, CHAI R T, et al. Synthesis of carbon nanodots for detection of aluminum ion with fluorescence enhancement[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1901-1908. (in Chinese)
|
XU X W, ZHANG K, ZHAO L, et al. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation[J]. ACS Applied Materials &Interfaces, 2016, 8(48): 32706-32716.
|
钟青梅, 黄欣虹, 覃庆敏, 等. 以碳量子点为过氧化物模拟酶的葡萄糖测定方法[J]. 分析化学,2018,46(7):1062-1068. doi: 10.11895/j.issn.0253-3820.171396
ZHONG Q M, HUANG X H, QIN Q M, et al. Determination of glucose based on carbon quantum dots as peroxidase mimetic enzyme[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1062-1068. (in Chinese) doi: 10.11895/j.issn.0253-3820.171396
|
CHEN A Y, LIANG W B, WANG H J, et al. Anodic electrochemiluminescence of carbon dots promoted by nitrogen doping and application to rapid cancer cell detection[J]. Analytical Chemistry, 2020, 92(1): 1379-1385. doi: 10.1021/acs.analchem.9b04537
|
邓帅, 李雨珊, 段延芳, 等. 荧光碳点在脊椎类模式动物斑马鱼中的活体成像与毒理学研究[J]. 发光学报,2015,36(4):485-490. doi: 10.3788/fgxb20153604.0485
DENG SH, LI Y SH, DUAN Y F, et al. Flourescent imaging and toxicology study of carbon dots in transparent zebrafishes[J]. Chinese Journal of Luminescence, 2015, 36(4): 485-490. (in Chinese) doi: 10.3788/fgxb20153604.0485
|
XIONG Y, SCHNEIDER J, RECKMEIER C J, et al. Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots[J]. Nanoscale, 2017, 9(32): 11730-11738. doi: 10.1039/C7NR03648E
|
YUAN F L, LI SH H, FAN Z T, et al. Shining carbon dots: synthesis and biomedical and optoelectronic applications[J]. Nano Today, 2016, 11(5): 565-586. doi: 10.1016/j.nantod.2016.08.006
|
ZHOU ZH J, TIAN P F, LIU X Y, et al. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted, aggregation-enhanced emission for light-emitting devices and visible light communication[J]. Advanced Science, 2018, 5(8): 1800369. doi: 10.1002/advs.201800369
|
ARDEKANI S M, DEHGHANI A, HASSAN M, et al. Two-photon excitation triggers combined chemo-photothermal therapy via doped carbon nanohybrid dots for effective breast cancer treatment[J]. Chemical Engineering Journal, 2017, 330: 651-662. doi: 10.1016/j.cej.2017.07.165
|
SHI Y P, PAN Y, ZHONG J, et al. Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging[J]. Carbon, 2015, 93: 742-750. doi: 10.1016/j.carbon.2015.05.100
|
姜杰, 李士浩, 严一楠, 等. 氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J]. 发光学报,2017,38(12):1567-1574. doi: 10.3788/fgxb20173812.1567
JIANG J, LI SH H, YAN Y N, et al. Preparation of N-doped fluorescent carbon dots with high quantum yield for in-vitro bioimaging[J]. Chinese Journal of Luminescence, 2017, 38(12): 1567-1574. (in Chinese) doi: 10.3788/fgxb20173812.1567
|
YAN X, CUI X, LI L SH. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. Journal of the American Chemical Society, 2010, 132(17): 5944-5945. doi: 10.1021/ja1009376
|
李俊芬, 王冬秀, 李鹏霞, 等. 一步水热法合成荧光碳点检测锰(Ⅶ)[J]. 分析化学,2019,47(5):731-738.
LI J F, WANG D X, LI P X, et al. One-step hydrothermal synthesis of carbon dots for detection of manganese (Ⅶ)[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5): 731-738. (in Chinese)
|
KANG S H, MHIN S, HAN H, et al. Ultrafast method for selective design of graphene quantum dots with highly efficient blue emission[J]. Scientific Reports, 2016, 6: 38423. doi: 10.1038/srep38423
|
DONG Y Q, PANG H CH, REN SH Y, et al. Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots[J]. Carbon, 2013, 64: 245-251. doi: 10.1016/j.carbon.2013.07.059
|
杜方凯, 张慧, 谭学才, 等. 基于氮掺杂石墨烯量子点/硫化镉纳米晶电化学发光传感器检测硫化氢[J]. 分析化学,2020,48(2):240-247.
DU F K, ZHANG H, TAN X C, et al. Detection of hydrogen sulfide based on nitrogen-doped graphene quantum dots/cadmium sulfide nanocrystals electrochemiluminescence sensor[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 240-247. (in Chinese)
|
邹小波, 史永强, 郑悦, 等. 基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J]. 分析化学,2018,46(6):960-968. doi: 10.11895/j.issn.0253-3820.181096
ZOU X B, SHI Y Q, ZHENG Y, et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese) doi: 10.11895/j.issn.0253-3820.181096
|
曲松楠, 孙铭鸿, 田震, 等. 氮掺杂碳点的合成与应用[J]. 发光学报,2019,40(5):557-580. doi: 10.3788/fgxb20194005.0557
QU S N, SUN M H, TIAN ZH, et al. Synthesis and application of nitrogen-doped carbon dots[J]. Chinese Journal of Luminescence, 2019, 40(5): 557-580. (in Chinese) doi: 10.3788/fgxb20194005.0557
|
ZHU SH J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research, 2015, 8(2): 355-381. doi: 10.1007/s12274-014-0644-3
|
ZHAI X Y, ZHANG P, LIU CH J, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chemical Communications, 2012, 48(64): 7955-7957. doi: 10.1039/c2cc33869f
|
LI D, HAN D, QU S N, et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion[J]. Light:Science &Applications, 2016, 5(7): e16120.
|
QU S N, SHEN D ZH, LIU X Y, et al. Highly luminescent carbon-nanoparticle-based materials: factors influencing photoluminescence quantum yield[J]. Particle &Particle Systems Characterization, 2014, 31(11): 1175-1182.
|
QU S N, WANG X Y, LU Q P, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angewandte Chemie International Edition, 2012, 51(49): 12215-12218. doi: 10.1002/anie.201206791
|
QU S N, LIU X Y, GUO X Y, et al. Amplified spontaneous green emission and lasing emission from carbon nanoparticles[J]. Advanced Functional Materials, 2014, 24(18): 2689-2695. doi: 10.1002/adfm.201303352
|
SK M A, ANANTHANARAYANAN A, HUANG L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. Journal of Materials Chemistry C, 2014, 2(34): 6954-6960. doi: 10.1039/C4TC01191K
|
QU S N, ZHOU D, LI D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering[J]. Advanced Materials, 2016, 28(18): 3516-3521. doi: 10.1002/adma.201504891
|
BAO X, YUAN Y, CHEN J Q, et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration[J]. Light:Science &Applications, 2018, 7(1): 91.
|
LI D, JING P T, SUN L H, et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots[J]. Advanced Materials, 2018, 30(13): 1705913. doi: 10.1002/adma.201705913
|
ZHU X J, SU Q Q, FENG W, et al. Anti-Stokes shift luminescent materials for bio-applications[J]. Chemical Society Reviews, 2017, 46(4): 1025-1039. doi: 10.1039/C6CS00415F
|
CHEN G Y, QIU H L, PRASAD P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chemical Reviews, 2014, 114(10): 5161-5214. doi: 10.1021/cr400425h
|
LI D, LIANG CH, USHAKOVA E V, et al. Thermally activated upconversion near-infrared photoluminescence from carbon dots synthesized via microwave assisted exfoliation[J]. Small, 2019, 15(50): 1905050. doi: 10.1002/smll.201905050
|
CHEN Y H, ZHENG M T, XIAO Y, et al. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission[J]. Advanced Materials, 2016, 28(2): 312-318. doi: 10.1002/adma.201503380
|
OOYAMA Y, YOSHIKAWA S, WATANABE S, et al. Molecular design of novel non-planar heteropolycyclic fluorophores with bulky substituents: convenient synthesis and solid-state fluorescence characterization[J]. Organic &Biomolecular Chemistry, 2006, 4(18): 3406-3409.
|
SUN M Y, QU S N, HAO ZH D, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites[J]. Nanoscale, 2014, 6(21): 13076-13081. doi: 10.1039/C4NR04034A
|
ZHAI Y CH, ZHOU D, JING P T, et al. Preparation and application of carbon-nanodot@NaCl composite phosphors with strong green emission[J]. Journal of Colloid and Interface Science, 2017, 497: 165-171. doi: 10.1016/j.jcis.2017.03.007
|
ZHOU D, ZHAI Y CH, QU S N, et al. Electrostatic assembly guided synthesis of highly luminescent carbon-nanodots@BaSO4 hybrid phosphors with improved stability[J]. Small, 2017, 13(6): 1602055. doi: 10.1002/smll.201602055
|
LIU E SH, LI D, ZHOU X J, et al. Highly emissive carbon dots in solid state and their applications in light-emitting devices and visible light communication[J]. ACS Sustainable Chemistry &Engineering, 2019, 7(10): 9301-9308.
|
ZHOU D, JING P T, WANG Y, et al. Carbon dots produced via space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states[J]. Nanoscale Horizons, 2019, 4(2): 388-395. doi: 10.1039/C8NH00247A
|
SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science, 2015, 308(5726): 1274-1278.
|
LIM S H, KO Y H, RODRIGUEZ C, et al. Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures[J]. Light:Science &Applications, 2016, 5(2): e16030.
|
ZHAI Y CH, WANG Y, LI D, et al. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92[J]. Journal of Colloid and Interface Science, 2018, 528: 281-288. doi: 10.1016/j.jcis.2018.05.101
|
TIAN ZH, TIAN P F, ZHOU X J, et al. Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication[J]. Nanoscale, 2019, 11(8): 3489-3494. doi: 10.1039/C9NR00224C
|
ELGALA H, MESLEH R, HAAS H. Indoor optical wireless communication: potential and state-of-the-art[J]. IEEE Communications Magazine, 2011, 49(9): 56-62. doi: 10.1109/MCOM.2011.6011734
|
CHUN H, CHIANG C J, MONKMAN A, et al. A study of illumination and communication using organic light emitting diodes[J]. Journal of Lightwave Technology, 2013, 31(22): 3511-3517. doi: 10.1109/JLT.2013.2284247
|
MERUGA J M, CROSS W M, MAY P S, et al. Security printing of covert quick response codes using upconverting nanoparticle inks[J]. Nanotechnology, 2012, 23(39): 395201. doi: 10.1088/0957-4484/23/39/395201
|
ZHANG X T, LI D, ZHOU D, et al. Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced luminescence[J]. RSC Advances, 2016, 6(83): 79620-79624. doi: 10.1039/C6RA11076B
|
XU H, CHEN R F, SUN Q, et al. Recent progress in metal-organic complexes for optoelectronic applications[J]. Chemical Society Reviews, 2014, 43(10): 3259-3302. doi: 10.1039/C3CS60449G
|
BAO X, USHAKOVA E V, LIU E SH, et al. On-Off switching of the phosphorescence signal in a carbon dot/polyvinyl alcohol composite for multiple data encryption[J]. Nanoscale, 2019, 11(30): 14250-14255. doi: 10.1039/C9NR05123F
|
HONG G S, ANTARIS A L, DAI H J. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 2017, 1(1): 0010. doi: 10.1038/s41551-016-0010
|
PANSARE V J, HEJAZI S, FAENZA W J, et al. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers[J]. Chemistry of Materials, 2012, 24(5): 812-827. doi: 10.1021/cm2028367
|
FERNANDES N, RODRIGUES C F, MOREIRA A F, et al. Overview of the application of inorganic nanomaterials in cancer photothermal therapy[J]. Biomaterials Science, 2020, 8(11): 2990-3020. doi: 10.1039/D0BM00222D
|
XU G Y, BAO X, CHEN J Q, et al. In vivo tumor photoacoustic imaging and photothermal therapy based on supra-(carbon nanodots)[J]. Advanced Healthcare Materials, 2019, 8(2): 1800995. doi: 10.1002/adhm.201800995
|
ZHANG Q F, UCHAKER E, CANDELARIA S L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews, 2013, 42(7): 3127-3171. doi: 10.1039/c3cs00009e
|
ZHANG X L, YANG H, GUO J L, et al. Nitrogen-doped hollow porous carbon nanospheres coated with MnO2 nanosheets as excellent sulfur hosts for Li-S batteries[J]. Nanotechnology, 2017, 28(47): 475401. doi: 10.1088/1361-6528/aa8f78
|
WANG R H, XU CH H, SUN J, et al. Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties[J]. Scientific Reports, 2014, 4: 7171.
|
ZHANG X T, ZHANG ZH Y, HU F, et al. Carbon-dots-derived 3D highly nitrogen-doped porous carbon framework for high-performance lithium ion storage[J]. ACS Sustainable Chemistry &Engineering, 2019, 7(11): 9848-9856.
|