Citation: | JIANG Yi-yang, CHEN Yan, WANG Xu-dong, ZHAO Dong-yang, LIN Tie, SHEN Hong, MENG Xiang-jian, WANG Lin, WANG Jian-lu. Fabrication and optoelectronic characterization of suspended In2O3 nanowire transistors[J]. Chinese Optics, 2021, 14(1): 196-205. doi: 10.37188/CO.2020-0062 |
[1] |
HEO Y W, VARADARAJAN V, KAUFMAN M, et al. Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy[J]. Applied Physics Letters, 2002, 81(16): 3046-3048. doi: 10.1063/1.1512829
|
[2] |
JIANG W, WANG X D, CHEN Y, et al. Large-area high quality PtSe2 thin film with versatile polarity[J]. InfoMat, 2019, 1(2): 260-267.
|
[3] |
YAN R X, GARGAS D, YANG P D. Nanowire photonics[J]. Nature Photonics, 2009, 3(10): 569-576. doi: 10.1038/nphoton.2009.184
|
[4] |
WU G J, TIAN B B, LIU L, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains[J]. Nature Electronics, 2020, 3(1): 43-50. doi: 10.1038/s41928-019-0350-y
|
[5] |
APPENZELLER J, KNOCH J, BJORK M T, et al. Toward nanowire electronics[J]. IEEE Transactions on Electron Devices, 2008, 55(11): 2827-2845. doi: 10.1109/TED.2008.2008011
|
[6] |
HONG W K, SOHN J I, HWANG D K, et al. Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors[J]. Nano Letters, 2008, 8(3): 950-956. doi: 10.1021/nl0731116
|
[7] |
CUI Y, WEI Q Q, PARK H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533): 1289-1292. doi: 10.1126/science.1062711
|
[8] |
ZHENG G F, PATOLSKY F, CUI Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays[J]. Nature Biotechnology, 2005, 23(10): 1294-1301. doi: 10.1038/nbt1138
|
[9] |
HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899. doi: 10.1126/science.1060367
|
[10] |
WAN Q, LI Q H, CHEN Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J]. Applied Physics Letters, 2004, 84(18): 3654-3656. doi: 10.1063/1.1738932
|
[11] |
GOMES U P, ERCOLANI D, ZANNIER V, et al. Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods[J]. Semiconductor Science and Technology, 2015, 30(11): 115012. doi: 10.1088/0268-1242/30/11/115012
|
[12] |
ROCCI M, DEMONTIS V, PRETE D, et al. Suspended InAs nanowire-based devices for thermal conductivity measurement using the 3ω method[J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6299-6305. doi: 10.1007/s11665-018-3715-x
|
[13] |
SU M, ZOU X M, GONG Y N, et al. Sub-kT/q switching in In2O3 nanowire negative capacitance field-effect transistors[J]. Nanoscale, 2018, 10(40): 19131-19139. doi: 10.1039/C8NR06163G
|
[14] |
KONG Y C, YU D P, ZHANG B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J]. Applied Physics Letters, 2001, 78(4): 407-409. doi: 10.1063/1.1342050
|
[15] |
YANG M, PANG G SH, JIANG L F, et al. Hydrothermal synthesis of one-dimensional zinc oxides with different precursors[J]. Nanotechnology, 2006, 17(1): 206-212. doi: 10.1088/0957-4484/17/1/034
|
[16] |
ZOU X M, LIU X Q, WANG C L, et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors[J]. ACS Nano, 2013, 7(1): 804-810. doi: 10.1021/nn305289w
|
[17] |
LIU Z W, ONG C, YU T, et al. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties[J]. Applied Physics Letters, 2006, 88(5): 053110. doi: 10.1063/1.2168675
|
[18] |
ZHANG D H, LI C, HAN S, et al. Electronic transport studies of single-crystalline In2O3 nanowires[J]. Applied Physics Letters, 2003, 82(1): 112-114. doi: 10.1063/1.1534938
|
[19] |
MENG M, WU X L, JI X L, et al. Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires[J]. Nano Research, 2017, 10(8): 2772-2781. doi: 10.1007/s12274-017-1481-y
|
[20] |
SHAO D L, QIN L Q, SAWYER S. Near ultraviolet photodetector fabricated from polyvinyl-alcohol coated In2O3 nanoparticles[J]. Applied Surface Science, 2012, 261: 123-127. doi: 10.1016/j.apsusc.2012.07.111
|
[21] |
ZHU H Y, WANG Y, XIAO J, et al. Observation of piezoelectricity in free-standing monolayer MoS2[J]. Nature Nanotechnology, 2015, 10(2): 151-155. doi: 10.1038/nnano.2014.309
|
[22] |
SU M, YANG ZH Y, LIAO L, et al. Side-Gated In2O3 nanowire ferroelectric FETs for high-performance nonvolatile memory applications[J]. Advanced Science, 2016, 3(9): 1600078. doi: 10.1002/advs.201600078
|
[23] |
KONSTANTATOS G, SARGENT E H. Nanostructured materials for photon detection[J]. Nature Nanotechnology, 2010, 5(6): 391-400. doi: 10.1038/nnano.2010.78
|
[24] |
ZHENG D SH, WANG J L, HU W D, et al. When nanowires meet ultrahigh ferroelectric field–high-performance full-depleted nanowire photodetectors[J]. Nano Letters, 2016, 16(4): 2548-2555. doi: 10.1021/acs.nanolett.6b00104
|
[25] |
GUO N, HU W D, LIAO L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature[J]. Advanced Materials, 2014, 26(48): 8203-8209. doi: 10.1002/adma.201403664
|
[26] |
SOCI C, ZHANG A, XIANG B, et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 2007, 7(4): 1003-1009. doi: 10.1021/nl070111x
|
[27] |
GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. doi: 10.1126/science.1176706
|
[28] |
DAS K, MUKHERJEE S, MANNA S, et al. Single Si nanowire (diameter ≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity[J]. Nanoscale, 2014, 6(19): 11232-11239. doi: 10.1039/C4NR03170A
|
[29] |
LU J F, XU C X, DAI J, et al. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles[J]. Nanoscale, 2015, 7(8): 3396-3403. doi: 10.1039/C4NR07114J
|
[30] |
LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501. doi: 10.1038/nnano.2013.100
|
[31] |
HUANG S Y, OU G, CHENG J, et al. Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning[J]. Journal of Materials Chemistry C, 2013, 1(39): 6463-6470. doi: 10.1039/c3tc31051e
|