Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
LIANG Zhi-xun, XU Chuan-pei, ZHU Ai-jun, HU Cong, DU She-hui. Integrated silicon waveguide electro-optic half-adder based on Epsilon-Near-Zero and ITO[J]. Chinese Optics, 2020, 13(5): 1001-1013. doi: 10.37188/CO.2020-0078
Citation: LIANG Zhi-xun, XU Chuan-pei, ZHU Ai-jun, HU Cong, DU She-hui. Integrated silicon waveguide electro-optic half-adder based on Epsilon-Near-Zero and ITO[J]. Chinese Optics, 2020, 13(5): 1001-1013. doi: 10.37188/CO.2020-0078

Integrated silicon waveguide electro-optic half-adder based on Epsilon-Near-Zero and ITO

Funds:  Supported by National Natural Science Foundation of China (No. 61561012, No. 61671164, No. 61861012), Natural Science Foundation of Guangxi Province (No. 2018GXNSFAA138115, No. 2017GXNSFAA198021, No. 2020GXNSFAA159172)
More Information
  • Corresponding author: xcp@guet.edu.cn
  • Received Date: 28 Apr 2020
  • Rev Recd Date: 08 Jun 2020
  • Available Online: 16 Sep 2020
  • Publish Date: 01 Oct 2020
  • In order to achieve high-speed electro-optic hybrid operation of half-adders and solve their disadvantages in speed, energy consumption and size, a silicon waveguide integrated electro-optic half-adder is designed based on an Epsilon-Near-Zero and ITO electrical-tunable film. The ITO electrical-tunable film is used as the switch for the optical path, and thus achieve the half-add function of two binary numbers. Simulation results show that the device unit can complete the optical signal logic control when the applied voltage is 0 V and 2.35 V. When the hybrid electro-optic half-adder works at a wavelength of 1550 nm, the insertion loss is 0.63 dB, the extinction ratio is 31.73 dB, the data transmission rate is 61.62 GHz, the energy consumption per bit is 13.44 fJ, and the size of the whole half-adder is less than 21.3 μm×1.5 μm×1.2 μm. The device is compact and has a low insertion loss. This provides a theoretical foundation for the design of high-speed hybrid electro-optic logic devices and half-adders.

     

  • loading
  • 孙凝晖, 谭光明. 高性能计算机发展与政策[J]. 中国科学院院刊,2019,34(6):609-616.

    SUN N H, TAN G M. Development and policy of high performance computer[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 609-616. (in Chinese)
    金钟, 陆忠华, 李会元, 等. 高性能计算之源起——科学计算的应用现状及发展思考[J]. 中国科学院院刊,2019,34(6):625-639.

    JIN ZH, LU ZH H, LI H Y, et al. Origin of high performance computing—current status and developments of scientific computing applications[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 625-639. (in Chinese)
    SERVICE R F. Chipmakers look past Moore's law, and silicon[J]. Science, 2018, 361(6400): 321. doi: 10.1126/science.361.6400.321
    YE P D, ERNST T, KHARE M V. The last silicon transistor: nanosheet devices could be the final evolutionary step for Moore's Law[J]. IEEE Spectrum, 2019, 56(8): 30-35. doi: 10.1109/MSPEC.2019.8784120
    董文婵. 基于标准逻辑单元的全光可编程逻辑阵列研究[D]. 武汉: 华中科技大学, 2018.

    DONG W CH. Research on all-optical programmable logic array based on canonical logic units[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese)
    GRANPAYEH A, HABIBIYAN H, PARVIN P. Photonic crystal directional coupler for all-optical switching, tunable multi/demultiplexing and beam splitting applications[J]. Journal of Modern Optics, 2019, 66(4): 359-366. doi: 10.1080/09500340.2018.1511859
    JANANI K, RAJESH A, SHANKAR T. Design of an optical half-adder using cohesive twin-structured PCRR[J]. Journal of Computational Electronics, 2018, 17(2): 837-844. doi: 10.1007/s10825-018-1161-5
    刁加加, 安立宝, 常春蕊. 碳纳米管在典型微纳电子器件中的应用进展[J]. 液晶与显示,2016,31(2):149-156.

    DIAO J J, AN L B, CHANG CH R. Progress on the application of carbon nanotubes in typical micro and nano electronic devices[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(2): 149-156. (in Chinese)
    王蒙, 蒋同海, 唐新余, 等. 光通信网络中的信号导向逻辑器件设计[J]. 半导体光电,2018,39(6):802-805, 814.

    WANG M, JIANG T H, TANG X Y, et al. Design and implementation of signal logic-oriented devices in optical communication network[J]. Semiconductor Optoelectronics, 2018, 39(6): 802-805, 814. (in Chinese)
    张杰, 李仕琪, 丁健, 等. 基于石墨烯-硅混合集成光波导的电光半加器[J]. 光电子·激光,2018,29(8):805-810.

    ZHANG J, LI SH Q, DING J, et al. Design of a electro-optical half-adder based on silicon-graphene waveguides[J]. Journal of Optoelectronics·Laser, 2018, 29(8): 805-810. (in Chinese)
    REZAEI M H, ZARIFKAR A. Subwavelength electro-optical half-subtractor and half-adder based on graphene plasmonic waveguides[J]. Plasmonics, 2019, 14(6): 1939-1947. doi: 10.1007/s11468-019-00997-8
    DONG G N, WANG Y L, ZHANG X L. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity[J]. Optics Letters, 2018, 43(24): 5977-5980. doi: 10.1364/OL.43.005977
    SUN SH, NARAYANA V K, SARPKAYA I, et al. Hybrid photonic-plasmonic nonblocking broadband 5× 5 router for optical networks[J]. IEEE Photonics Journal, 2018, 10(2): 4900312.
    ZHU A J, CHEN D Y, XU CH P, et al.. A fault check graph approach for photonic router in network on chip[C]. Proceedings of 2018 IEEE 27th Asian Test Symposium, 2018: 13-18.
    YAHYA M R, WU N, YAN G ZH, et al. RoR: a low insertion loss design of rearrangeable hybrid photonic-plasmonic 6x6 non-blocking router for ONoCs[J]. IEICE Electronics Express, 2019, 16: 20190346. doi: 10.1587/elex.16.20190346
    朱爱军, 赵春霞, 胡聪, 等. 基于细粒度的光片上网络MRR制程漂移容错研究[J]. 仪器仪表学报,2019,40(2):249-256.

    ZHU A J, ZHAO CH X, HU C, et al. Study on fine-grain based fault tolerance of MRR process variation in photonic network on chip[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 249-256. (in Chinese)
    祁媚. 石墨烯薄膜的可控制备及其光调控特性与器件研究[D]. 西安: 西北大学, 2017.

    QI M. Study on controllable synthesis of graphene film and its optical modulating property/device[D]. Xi’an: Northwest University, 2017. (in Chinese)
    XIE Y Y, HU X H, ZHANG Y W, et al. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films[J]. Carbohydrate Polymers, 2020, 229: 115456. doi: 10.1016/j.carbpol.2019.115456
    ZHAO Y, XING G J, ZHAO Y N, et al. Graphene aerogel modified with a vanadium nitride film by a sputtering method for use in high-performance supercapacitors[J]. Materials Letters, 2020, 261: 127085. doi: 10.1016/j.matlet.2019.127085
    钟东洲, 计永强. 周期性极化铌酸锂晶体的电光复合逻辑门[J]. 光子学报,2015,44(5):0523004. doi: 10.3788/gzxb20154405.0523004

    ZHONG D ZH, JI Y Q. Electro-optical composite logic gates based on periodically poled lithium niobate crystal[J]. Acta Photonica Sinica, 2015, 44(5): 0523004. (in Chinese) doi: 10.3788/gzxb20154405.0523004
    王兰, 董渊, 高嵩, 等. 钙钛矿材料在激光领域的研究进展[J]. 中国光学,2019,12(5):993-1014. doi: 10.3788/co.20191205.0993

    WANG L, DONG Y, GAO S, et al. Research progress of perovskite materials in the field of lasers[J]. Chinese Optics, 2019, 12(5): 993-1014. (in Chinese) doi: 10.3788/co.20191205.0993
    KUMAR A, MEDHEKAR S. All optical NOR and NAND gates using four circular cavities created in 2D nonlinear photonic crystal[J]. Optics &Laser Technology, 2020, 123: 105910.
    杨傅子. 从晶体光学到液晶光学—液晶物理的光学研究方法进展[J]. 液晶与显示,2016,31(1):1-39.

    YANG F Z. From crystal optics to liquid crystal optics-the development of optical techniques for studying liquid crystal physics[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(1): 1-39. (in Chinese)
    林致远, 杨成绍, 邹志翔, 等. ITO像素电极工序对于HADS产品TFT特性的影响[J]. 液晶与显示,2016,31(1):370-374.

    LIN ZH Y, YANG CH SH, ZOU ZH X, et al. Effects of pixel ITO process on TFT characteristics of HADS product[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(1): 370-374. (in Chinese)
    靳琳, 宋世超, 文龙, 等. 基于表面等离激元的偏振不灵敏型电光调制器的理论研究[J]. 光电工程,2018,45(11):180156. doi: 10.12086/oee.2018.180156

    JIN L, SONG SH CH, WEN L, et al. Theoretical investigation of surface plasmonic polariton-based electro-optical modulator with low polarization dependence[J]. Opto-Electronic Engineering, 2018, 45(11): 180156. (in Chinese) doi: 10.12086/oee.2018.180156
    LIANG ZH X, XU CH P, ZHU A J, et al. Hybrid photonic-plasmonic electro-optic modulator for optical ring network-on-chip[J]. Optik, 2020, 210: 164503. doi: 10.1016/j.ijleo.2020.164503
    MA ZH ZH, LI ZH R, LIU K, et al. Indium-tin-oxide for high-performance electro-optic modulation[J]. Nanophotonics, 2015, 4(1): 198-213. doi: 10.1515/nanoph-2015-0006
    BADR M M, ABDELATTY M Y, SWILLAM M A. Ultra-fast silicon electro-optic modulator based on ITO-integrated directional coupler[J]. Physica Scripta, 2019, 94(6): 065502. doi: 10.1088/1402-4896/ab0ce1
    傅英, 徐文兰, 陆卫. 半导体量子电子和光电子器件[J]. 物理学进展,2001,21(3):255-277. doi: 10.3321/j.issn:1000-0542.2001.03.001

    FU Y, XU W L, LU W. Semiconductor quantum devices in electronics and optoelectronic[J]. Progress in Physics, 2001, 21(3): 255-277. (in Chinese) doi: 10.3321/j.issn:1000-0542.2001.03.001
    SOREF R. Mid-infrared 2×2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection[J]. Photonics Research, 2014, 2(5): 102-110. doi: 10.1364/PRJ.2.000102
    BELLANCA G, ORLANDI P, BASSI P. Assessment of the orthogonal and non-orthogonal coupled-mode theory for parallel optical waveguide couplers[J]. Journal of the Optical Society of America A, 2018, 35(4): 577-585. doi: 10.1364/JOSAA.35.000577
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views(2358) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return