Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHANG Xing-chao, PAN Rui, HAN Jia-yue, DONG Xiang, WANG Jun. Recent progress and prospects of topological quantum material-based photodetectors[J]. Chinese Optics, 2021, 14(1): 43-65. doi: 10.37188/CO.2020-0096
Citation: ZHANG Xing-chao, PAN Rui, HAN Jia-yue, DONG Xiang, WANG Jun. Recent progress and prospects of topological quantum material-based photodetectors[J]. Chinese Optics, 2021, 14(1): 43-65. doi: 10.37188/CO.2020-0096

Recent progress and prospects of topological quantum material-based photodetectors

Funds:  Supported by Outstanding Youth Foundation of National Natural Science Foundation of China (No. 61922022); Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.61421002); National Natural Science Foundation of China (No. 61875031)
More Information
  • The discovery of the topological quantum states of matter is a major milestone in condensed matter physics and material science. Due to the existence of special surface states (e.g. Dirac fermions, Weyl fermions, Majorana fermions), topological quantum materials can usually exhibit some novel physical properties (such as the quantum anomalous Hall effect, 3D quantum Hall effect, Zero-band gap caused by topological states, ultra-high carrier mobility, etc.), which are different from conventional semiconductors. Because of this, there is an abundance of prospects for applications in low-power electronic and optoelectronic devices, especially in broad-spectrum detection. However, the application of topological quantum materials in the field of photoelectric detection is still in the exploratory stage at present. This article reviews the characteristics and preparation methods of topological quantum materials and the development status with respect to optical-sensing materials in photodetectors. The structure and performance of the devices based on topological quantum materials are also mentioned as the development prospects in the field of broad-spectrum detection.

     

  • loading
  • [1]
    ATABAKI A H, MOAZENI S, PAVANELLO F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556(7701): 349-354. doi: 10.1038/s41586-018-0028-z
    [2]
    王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程,2019,48(1):0102001. doi: 10.3788/IRLA201948.0102001

    WANG J, JIANG Y D. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 0102001. (in Chinese) doi: 10.3788/IRLA201948.0102001
    [3]
    张猛蛟, 蔡毅, 江峰, 等. 紫外增强硅基成像探测器进展[J]. 中国光学,2019,12(1):19-37. doi: 10.3788/co.20191201.0019

    ZHANG M J, CAI Y, JIANG F, et al. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19-37. (in Chinese) doi: 10.3788/co.20191201.0019
    [4]
    XIA F N, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843. doi: 10.1038/nnano.2009.292
    [5]
    罗曼, 吴峰, 张莉丽, 等. 二维材料偏振响应光电探测[J]. 南通大学学报(自然科学版),2019,18(3):1-10.

    LUO M, WU F, ZHANG L L, et al. Detection of polarized light using two-dimensional atomic materials[J]. Journal of Nantong University (Natural Science Edition), 2019, 18(3): 1-10. (in Chinese)
    [6]
    公爽, 田金荣, 李克轩, 等. 新型二维材料在固体激光器中的应用研究进展[J]. 中国光学,2018,11(1):18-30. doi: 10.3788/co.20181101.0018

    GONG SH, TIAN J R, LI K X, et al. Advances in new two-dimensional materials and its application in solid-state lasers[J]. Chinese Optics, 2018, 11(1): 18-30. (in Chinese) doi: 10.3788/co.20181101.0018
    [7]
    WANG F K, ZHANG Y, GAO Y, et al. 2D metal chalcogenides for IR photodetection[J]. Small, 2019, 15(30): 1901347. doi: 10.1002/smll.201901347
    [8]
    BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 2018, 12(10): 601-607. doi: 10.1038/s41566-018-0239-8
    [9]
    LI Y F, ZHANG Y T, YU Y, et al. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams[J]. Photonics Research, 2020, 8(3): 368-374. doi: 10.1364/PRJ.380249
    [10]
    何珂, 薛其坤. 拓扑量子材料与量子反常霍尔效应[J]. 材料研究学报,2019,29(3):161-177.

    HE K, XUE Q K. Topological quantum materials and quantum anomalous hall effect[J]. Chinese Journal of Materials Research, 2019, 29(3): 161-177. (in Chinese)
    [11]
    崔亚宁, 任伟. 拓扑量子材料的研究进展[J]. 自然杂志,2019,41(5):348-357.

    CUI Y N, REN W. Research advances of topological quantum materials[J]. Chinese Journal of Nature, 2019, 41(5): 348-357. (in Chinese)
    [12]
    GUI X, PLETIKOSIC I, CAO H B, et al. A new magnetic topological quantum material candidate by design[J]. ACS Central Science, 2019, 5: 900-910.
    [13]
    ZHANG T T, JIANG Y, SONG ZH D, et al. Catalogue of topological electronic materials[J]. Nature, 2019, 566(7745): 475-479. doi: 10.1038/s41586-019-0944-6
    [14]
    WANG A Q, YE X G, YU D P, et al. Topological semimetal nanostructures from properties to topotronics[J]. ACS nano, 2020, 14(4): 3755-3778.
    [15]
    GAO H, VENDERBOS J W F, KIN Y, et al. Topological semimetals from first principles[J]. Annual Review of Materials Research, 2019, 49: 153-83. doi: 10.1146/annurev-matsci-070218-010049
    [16]
    WANG SH, LIN B C, Wang A Q, et al. Quantum transport in Dirac and Weyl semimetals: a review[J]. Advances in Physics:X, 2017, 2(3): 518-544. doi: 10.1080/23746149.2017.1327329
    [17]
    DAS P K, DI SANTE D, CILENTO F, et al. Electronic properties of candidate type-Ⅱ Weyl semimetal WTe2. a review perspective[J]. Electronic Structure, 2019, 1(1): 014003. doi: 10.1088/2516-1075/ab0835
    [18]
    SCHÜFFELGEN P, SCHMITT T, SCHLEENVOIGT M, et al. Exploiting topological matter for Majorana physics and devices[J]. Solid-State Electronics, 2019, 155: 99-104. doi: 10.1016/j.sse.2019.03.005
    [19]
    YUE Z J, WANG X L, GU M. Topological Insulator Materials for Advanced Optoelectronic Devices[M]. LUO H X. Advanced Topological Insulators. Beverly, MA, USA: Scrivener Publishing LLC, 2019: 45-70.
    [20]
    WANG H CH, WANG J. Electron transport in Dirac and Weyl semimetals[J]. Chinese Physics B, 2018, 27(10): 107402. doi: 10.1088/1674-1056/27/10/107402
    [21]
    张玉平, 唐利斌. 拓扑绝缘体光电探测器研究进展[J]. 红外技术,2020,42(1):1-9.

    ZHANG Y P, TANG L B. Research progress in photodetectors based on topological insulators[J]. Infrared Technology, 2020, 42(1): 1-9. (in Chinese)
    [22]
    CHAN C K, LINDNER N H, REFAEL G, et al. Photocurrents in Weyl semimetals[J]. Physical Review B, 2017, 95(4): 041104. doi: 10.1103/PhysRevB.95.041104
    [23]
    MA J CH, DENG K, ZHENG L, et al. Experimental progress on layered topological semimetals[J]. 2D Materials, 2019, 6(3): 032001. doi: 10.1088/2053-1583/ab0902
    [24]
    ZHE SH, RUI C, KARIM K, et al. Two-dimensional tellurium: progress, challenges, and prospects[J]. Nano-Micro Letters, 2020, 12: 1-34.
    [25]
    HAN J Y, WANG J. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions[J]. Chinese Physics B, 2019, 28(1): 017103. doi: 10.1088/1674-1056/28/1/017103
    [26]
    LI Y, SHI ZH F, LI X J, et al. Photodetectors based on inorganic halide perovskites: materials and devices[J]. Chinese Physics B, 2019, 28(1): 017803. doi: 10.1088/1674-1056/28/1/017803
    [27]
    WANG J, HAN J Y, CHEN X Q, et al. Design strategies for two-dimensional material photodetectors to enhance device performance[J]. InfoMat, 2019, 1(1): 33-53. doi: 10.1002/inf2.12004
    [28]
    胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J]. 物理学报,2019,68(12):120701.

    HU W D, LI Q, CHEN X SH, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese)
    [29]
    FANG Y R, GE Y Q, WANG C, et al. Mid-infrared photonics using 2D materials: status and challenges[J]. Laser &Photonics Reviews, 2020, 14(1): 1900098.
    [30]
    CHEN X Q, SHEHZAD K, GAO L, et al. Graphene hybrid structures for integrated and flexible optoelectronics[J]. Advanced Materials, 2020, 32(27): 1902039.
    [31]
    ZHANG CH, ZHANG Y, YUAN X, et al. Quantum hall effect based on Weyl orbits in Cd3As2[J]. Nature, 2019, 565(7739): 331-336. doi: 10.1038/s41586-018-0798-3
    [32]
    TANG F D, REN Y F, WANG P P, et al. Three-dimensional quantum hall effect and metal-insulator transition in ZrTe5[J]. Nature, 2019, 569(7757): 537-541. doi: 10.1038/s41586-019-1180-9
    [33]
    VERGNIORY M G, ELCORO L, FELSER C, et al. A complete catalogue of high-quality topological materials[J]. Nature, 2019, 566(7745): 480-485. doi: 10.1038/s41586-019-0954-4
    [34]
    TANG F, PO H C, VISHWANATH A, et al. Comprehensive search for topological materials using symmetry indicators[J]. Nature, 2019, 566(7745): 486-489. doi: 10.1038/s41586-019-0937-5
    [35]
    ZHANG Y, ZHANG F, XU Y G, et al. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors[J]. Small Methods, 2019, 3(2): 1900349.
    [36]
    BHATTACHARYYA B, GUPTA A, SENGUTTUVAN T D, et al. Topological insulator based dual state photo-switch originating through bulk and surface conduction channels[J]. Physica Status Solidi (B), 2018, 255(9): 800340. doi: 10.1002/pssb.201800340
    [37]
    CULCER D, KESER A C, LI Y Q, et al. Transport in two-dimensional topological materials: recent developments in experiment and theory[J]. 2D Materials, 2020, 7(2): 022007. doi: 10.1088/2053-1583/ab6ff7
    [38]
    BERNEVIG B A, HUGHES T L, ZHANG SH CH. Quantum spin hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806): 1757-1761. doi: 10.1126/science.1133734
    [39]
    KÖNIG M, BUHMANN H, MOLENKAMP L W, et al. The quantum spin hall effect: theory and experiment[J]. Journal of the Physical Society of Japan, 2008, 77(3): 031007. doi: 10.1143/JPSJ.77.031007
    [40]
    LIU CH X, HUGHES T L, QI X L, et al. Quantum spin hall effect in inverted type-Ⅱ semiconductors[J]. Physical Review Letters, 2008, 100(23): 236601. doi: 10.1103/PhysRevLett.100.236601
    [41]
    LIU C W, WANG ZH H, QIU R L J, et al. Development of topological insulator and topological crystalline insulator nanostructures[J]. Nanotechnology, 2020, 31(19): 192001. doi: 10.1088/1361-6528/ab6dfc
    [42]
    SWATEK P, WU Y, WANG L L, et al.. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. arXiv: 1907.09596, 2019.
    [43]
    LI ZH, LI J H, HE K, et al.. Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials[J]. arXiv: 2003.13485, 2020.
    [44]
    FU L. Topological crystalline insulators[J]. Physical Review Letters, 2011, 106(10): 106802. doi: 10.1103/PhysRevLett.106.106802
    [45]
    LI Z, SHAO S, LI N, et al. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies[J]. Nano Letters, 2013, 13(11): 5443-5448. doi: 10.1021/nl4030193
    [46]
    HSIEH T H, LIN H, LIU J W, et al. Topological crystalline insulators in the SnTe material class[J]. Nature Communications, 2012, 3(1): 982. doi: 10.1038/ncomms1969
    [47]
    SCHOOP L M, DAI X, CAVA R J, et al. Special topic on topological semimetals-new directions[J]. APL Materials, 2020, 8(3): 030401. doi: 10.1063/5.0006015
    [48]
    YAN M ZH, HUANG H Q, ZHANG K N, et al. Lorentz-violating type-Ⅱ Dirac fermions in transition metal dichalcogenide PtTe2[J]. Nature Communications, 2017, 8(1): 257. doi: 10.1038/s41467-017-00280-6
    [49]
    KUSHWAHA S K, KRIZAN J W, FELDMAN B E, et al. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi[J]. APL Materials, 2015, 3(4): 041504. doi: 10.1063/1.4908158
    [50]
    HUANG C, ZHOU B T, ZHANG H Q, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2[J]. Nature Communications, 2019, 10(1): 2217. doi: 10.1038/s41467-019-10233-w
    [51]
    GUO J, HUANG Y, WU X SH, et al. Thickness-dependent in-plane thermal conductivity and enhanced thermoelectric performance in p-Type ZrTe5 nanoribbons[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2019, 13(3): 1800529. doi: 10.1002/pssr.201800529
    [52]
    LV B Q, WENG H M, FU B B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031013. doi: 10.1103/PhysRevX.5.031013
    [53]
    SUN Y, WU SH CH, YAN B H. Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP[J]. Physical Review B, 2015, 92(11): 115428. doi: 10.1103/PhysRevB.92.115428
    [54]
    ZHANG CH, NI ZH L, ZHANG J L, et al. Ultrahigh conductivity in Weyl semimetal NbAs nanobelts[J]. Nature Materials, 2019, 18(5): 482-488. doi: 10.1038/s41563-019-0320-9
    [55]
    SOLUYANOV A A, GRESCH D, WANG ZH J, et al. Type-Ⅱ Weyl semimetals[J]. Nature, 2015, 527(7579): 495-498. doi: 10.1038/nature15768
    [56]
    DENG K, WAN G L, DENG P, et al. Experimental observation of topological Fermi arcs in type-Ⅱ Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12): 1105-1110. doi: 10.1038/nphys3871
    [57]
    MA J CH, GU Q Q, LIU Y N, et al. Nonlinear photoresponse of type-Ⅱ Weyl semimetals[J]. Nature Materials, 2019, 18(5): 476-481. doi: 10.1038/s41563-019-0296-5
    [58]
    ZHANG X, WANG J, ZHANG SH CH. Topological insulators for high-performance terahertz to infrared applications[J]. Physical Review B, 2010, 82(24): 245107. doi: 10.1103/PhysRevB.82.245107
    [59]
    YAN Y, LIAO ZH M, KE X X, et al. Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons[J]. Nano Letters, 2014, 14(8): 4389-4394. doi: 10.1021/nl501276e
    [60]
    SHARMA A, BHATTACHARYYA B, SRIVASTAVA A K, et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J]. Scientific Reports, 2016, 6(1): 19138. doi: 10.1038/srep19138
    [61]
    LIU CH, ZHANG H B, SUN ZH, et al. Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response[J]. Journal of Materials Chemistry C, 2016, 4(24): 5648-5655. doi: 10.1039/C6TC01083K
    [62]
    DAS B, DAS N S, SARKAR S, et al. Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector[J]. ACS Applied Materials &Interfaces, 2017, 9(27): 22788-22798.
    [63]
    ZHENG W SH, XIE T, ZHOU Y, et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors[J]. Nature Communications, 2015, 6(1): 6972. doi: 10.1038/ncomms7972
    [64]
    TANG W W, POLITANO A, GUO CH, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth Selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31): 1801786. doi: 10.1002/adfm.201801786
    [65]
    KIM J, PARK S, JANG H, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3): 482-488. doi: 10.1021/acsphotonics.6b00972
    [66]
    YANG M, HAN Q, LIU X CH, et al. Ultrahigh stability 3D TI Bi2Se3/MoO3 thin film Heterojunction infrared Photodetector at optical communication waveband[J]. Advanced Functional Materials, 2020, 30(12): 1909659. doi: 10.1002/adfm.201909659
    [67]
    TANG Y X, JIANG T, ZHOU T, et al. Ultrafast exciton transfer in perovskite CsPbBr3 quantum dots/topological insulator Bi2Se3 film heterostructure[J]. Nanotechnology, 2019, 30(32): 325702. doi: 10.1088/1361-6528/ab166f
    [68]
    LIANG F X, LAING L, ZHAO X Y, et al. A sensitive broadband (UV-vis-NIR) perovskite photodetector using topological insulator as electrodes[J]. Advanced Optical Materials, 2019, 7(4): 1801392.
    [69]
    YAO J D, SHAO J M, LI S W, et al. Polarization dependent photocurrent in the Bi2Te3 topological insulator film for multifunctional photodetection[J]. Scientific Reports, 2015, 5(1): 14184. doi: 10.1038/srep14184
    [70]
    YAO J D, ZHENG ZH Q, YANG G W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-7840. doi: 10.1039/C6TC01453D
    [71]
    YAO J D, ZHENG ZH Q, YANG G W. All-layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe Photodetector with Bi2Te3 topological insulator electrodes[J]. Advanced Functional Materials, 2017, 27(33): 1701823. doi: 10.1002/adfm.201701823
    [72]
    YANG M, WANG J, ZHAO Y F, et al. Three-dimensional topological insulator Bi2Te3/Organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers[J]. ACS Nano, 2018, 13(1): 755-763.
    [73]
    YANG M, WANG J, ZHAO Y F, et al. Polarimetric three-dimensional topological insulators/organics thin film heterojunction photodetectors[J]. ACS Nano, 2019, 13(9): 10810-10817. doi: 10.1021/acsnano.9b05775
    [74]
    SHARMA A, SENGUTTUVAN T D, OJHA V N, et al. Novel synthesis of topological insulator based nanostructures (Bi2Te3) demonstrating high performance photodetection[J]. Scientific Reports, 2019, 9(1): 3804. doi: 10.1038/s41598-019-40394-z
    [75]
    QIAO H, YUAN J, XU Z Q, et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894. doi: 10.1021/nn506920z
    [76]
    LIU H W, ZHU X L, SUN X X, et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3p-n heterojunctions[J]. ACS Nano, 2019, 13(11): 13573-13580. doi: 10.1021/acsnano.9b07563
    [77]
    ZHENG K, LUO L B, ZHANG T F, et al. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film[J]. Journal of Materials Chemistry C, 2015, 3(35): 9154-9160. doi: 10.1039/C5TC01772F
    [78]
    SUN H H, JIANG T, ZANG Y Y, et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures[J]. Nanoscale, 2017, 9(27): 9325-9332. doi: 10.1039/C7NR01715D
    [79]
    LIU H W, LI D, MA CH, et al. Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p–n heterojunctions for high performance optoelectronics[J]. Nano Energy, 2019, 59: 66-74. doi: 10.1016/j.nanoen.2019.02.032
    [80]
    HUANG S M, HUANG S J, YAN Y J, et al. Extremely high-performance visible light photodetector in the Sb2SeTe2 nanoflake[J]. Scientific Reports, 2017, 7(1): 45413. doi: 10.1038/srep45413
    [81]
    AHER R, BHORDE A, NAIR S, et al. Solvothermal growth of PbBi2Se4 nano-flowers: a material for humidity sensor and photodetector applications[J]. Physica Status Solidi (A), 2019, 216(11): 1900065. doi: 10.1002/pssa.201900065
    [82]
    SAFDAR M, WANG Q SH, MIRZA M, et al. Topological surface transport properties of single-crystalline SnTe nanowire[J]. Nano Letters, 2013, 13(11): 5344-5349. doi: 10.1021/nl402841x
    [83]
    JIANG T, ZANG Y Y, SUN H H. Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy[J]. Advanced Optical Materials, 2017, 5(5): 1600727. doi: 10.1002/adom.201600727
    [84]
    YANG J, YU W ZH, PAN ZH H, et al. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity[J]. Small, 2018, 14(37): 1802598. doi: 10.1002/smll.201802598
    [85]
    GU S H, DING K, PAN J, et al. Self-driven, broadband and ultrafast photovoltaic detectors based on topological crystalline insulator SnTe/Si heterostructures[J]. Journal of Materials Chemistry A, 2017, 5(22): 11171-11178. doi: 10.1039/C7TA02222K
    [86]
    ZHANG H B, MAN B Y, ZHANG Q. Topological crystalline insulator SnTe/Si vertical heterostructure photodetectors for high-performance near-infrared detection[J]. ACS Applied Materials &Interfaces, 2017, 9(16): 14067-14077.
    [87]
    ZHANG H B, SONG Z L, LI D, et al. Near-infrared photodetection based on topological insulator P-N heterojunction of SnTe/Bi2Se3[J]. Applied Surface Science, 2020, 509: 145290. doi: 10.1016/j.apsusc.2020.145290
    [88]
    CONTE A M, PULCI O, BECHSTEDT F. Electronic and optical properties of topological semimetal Cd3As2[J]. Scientific Reports, 2017, 7(1): 45500. doi: 10.1038/srep45500
    [89]
    WANG Q SH, LI C ZH, GE SH F, et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2[J]. Nano Letters, 2017, 17(2): 834-841. doi: 10.1021/acs.nanolett.6b04084
    [90]
    YAVARISHAD N, HOSSEINI T, KHEIRANDISH E, et al. Room-temperature self-powered energy photodetector based on optically induced Seebeck effect in Cd3As2[J]. Applied Physics Express, 2017, 10(5): 052201. doi: 10.7567/APEX.10.052201
    [91]
    HUANG Z H, JIANG Y D, HAN Q, et al. High responsivity and fast UV-Vis-SWIR photodetector based on Cd3As2/MoS2 heterojunction[J]. Nanotechnology, 2019, 31(6): 064001.
    [92]
    WU Y F, ZHANG L, LI C ZH, et al. Dirac semimetal heterostructures: 3D Cd3As2 on 2D Graphene[J]. Advanced Materials, 2018, 30(34): 1707547. doi: 10.1002/adma.201707547
    [93]
    YANG M, WANG J, HAN J Y, et al. Enhanced performance of wideband room temperature photodetector based on Cd3As2 thin film/Pentacene heterojunction[J]. ACS Photonics, 2018, 5(8): 3438-3445. doi: 10.1021/acsphotonics.8b00727
    [94]
    YANG M, WANG J, YANG Y K, et al. Ultraviolet to long-wave infrared photodetectors based on a three- dimensional Dirac semimetal/organic thin film heterojunction[J]. The Journal of Physical Chemistry Letters, 2019, 10(14): 3914-3921. doi: 10.1021/acs.jpclett.9b01619
    [95]
    LÉONARD F, YU W L, COLLINS K C, et al. Strong photothermoelectric response and contact reactivity of the Dirac semimetal ZrTe5[J]. ACS Applied Materials &Interfaces, 2017, 9(42): 37041-37047.
    [96]
    YU X CH, YU P, WU D, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor[J]. Nature Communications, 2018, 9(1): 1545. doi: 10.1038/s41467-018-03935-0
    [97]
    XU H, GUO CH, ZHANG J ZH, et al. PtTe2-based type-Ⅱ dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection[J]. Small, 2019, 15(52): 1903362. doi: 10.1002/smll.201903362
    [98]
    CHI SH M, LI ZH L, XIE Y, et al. A wide-range photosensitive Weyl semimetal single crystal-TaAs[J]. Advanced Materials, 2018, 30(43): 1801372-1801379. doi: 10.1002/adma.201801372
    [99]
    OSTERHOUDT G B, DIEBEL L K, GRAY M J, et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal[J]. Nature Materials, 2019, 18(5): 471-475. doi: 10.1038/s41563-019-0297-4
    [100]
    LAI J W, LIU X, MA J CH, et al. Anisotropic broadband photoresponse of layered type-Ⅱ Weyl semimetal MoTe2[J]. Advanced Materials, 2018, 30(22): 1707152-1707159. doi: 10.1002/adma.201707152
    [101]
    WANG Q SH, ZHENG J CH, HE Y, et al. Robust edge photocurrent response on layered type Ⅱ Weyl semimetal WTe2[J]. Nature Communications, 2019, 10(1): 5736. doi: 10.1038/s41467-019-13713-1
    [102]
    ZHOU W, CHEN J ZH, GAO H, et al. Anomalous and polarization-sensitive photoresponse of Td-WTe2 from visible to infrared light[J]. Advanced Materials, 2019, 31(5): 1804629-1804636. doi: 10.1002/adma.201804629
    [103]
    LAI J W, LIU Y N, MA J CH, et al. Broadband anisotropic photoresponse of the “hydrogen atom” version type-Ⅱ Weyl semimetal candidate TaIrTe[J]. ACS Nano, 2018, 12(4): 4055-4061. doi: 10.1021/acsnano.8b01897
    [104]
    LU ZH J, XU Y, YU Y Q, et al. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition[J]. Advanced Functional Materials, 2020, 30(9): 1907951. doi: 10.1002/adfm.201907951
    [105]
    CHEN W J, LIANG R R, ZHANG SH Q, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure[J]. Nano Research, 2020, 13(1): 127-132. doi: 10.1007/s12274-019-2583-5
    [106]
    YU W ZH, LI SH J, ZHANG Y P, et al. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility[J]. Small, 2017, 13(24): 1700268. doi: 10.1002/smll.201700268
    [107]
    LIU Y J, LIU CH, WANG X M, et al. Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe2[J]. Scientific Reports, 2018, 8(1): 12840. doi: 10.1038/s41598-018-29717-8
    [108]
    LU M Y, CHANG Y T, CHEN H J. Efficient self-driven photodetectors featuring a mixed-dimensional van der waals heterojunction formed from a CdS nanowire and a MoTe2 flake[J]. Small, 2018, 14(40): 1802302. doi: 10.1002/smll.201802302
    [109]
    MAKINO K, KUROMIYA S, TAKANO K, et al. THz pulse detection by multilayered GeTe/Sb2Te3[J]. ACS Applied Materials &Interfaces, 2016, 8(47): 32408-32413.
    [110]
    WANG X T, CUI Y, LI T, et al. Recent advances in the functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(3): 1801274. doi: 10.1002/adom.201801274
    [111]
    ROGALSKI A, KOPYTKO M, MARTYNIUK P. Two-dimensional infrared and terahertz detectors: outlook and status[J]. Applied Physics Reviews, 2019, 6(2): 021316. doi: 10.1063/1.5088578
    [112]
    杨旗, 申钧, 魏兴战, 等. 基于石墨烯的红外探测机理与器件结构研究进展[J]. 红外与激光工程,2020,49(1):0103003.

    YANG Q, SHEN J, WEI X ZH, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103003. (in Chinese)
    [113]
    YE L, LI H, CHEN Z F, et al. Near-infrared photodetector based on MoS2/Black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4): 692-699. doi: 10.1021/acsphotonics.6b00079
    [114]
    HUANG ZH ZH, ZHANG T F, LIU J K, et al. Amorphous MoS2 photodetector with ultra-broadband response[J]. ACS Applied Electronic Materials, 2019, 1(7): 1314-1321. doi: 10.1021/acsaelm.9b00247
    [115]
    ZHU W K, YAN F G, WEI X, et al. Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes[J]. Advanced Materials Letters, 2019, 10(5): 329-333. doi: 10.5185/amlett.2019.2281
    [116]
    TSAI T H, LIANG ZH Y, LIN Y CH, et al. Photogating WS2 photodetectors using embedded WSe2 charge puddles[J]. ACS Nano, 2020, 14(4): 4559-4566. doi: 10.1021/acsnano.0c00098
    [117]
    SUN J CH, WANG Y Y, GUO SH Q, et al. Lateral 2D WSe2 p–n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics[J]. Advanced Materials, 2020, 32(9): 1906499. doi: 10.1002/adma.201906499
    [118]
    ZHENG ZH Q, ZHANG T M, YAO J D, et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices[J]. Nanotechnology, 2016, 27(22): 225501. doi: 10.1088/0957-4484/27/22/225501
    [119]
    DU Y P, BO X Y, WANG D, et al. Emergence of topological nodal lines and type-Ⅱ Weyl nodes in the strong spin-orbit coupling system InNbX2(X=S, Se)[J]. Physical Review B, 2017, 96(23): 235152. doi: 10.1103/PhysRevB.96.235152
    [120]
    YUAN Y F, WANG W K, ZHOU Y H, et al. Pressure-induced superconductivity in topological semimetal candidate TaTe4[J]. Advanced Electronic Materials, 2020, 6(3): 1901260. doi: 10.1002/aelm.201901260
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views(5824) PDF downloads(798) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return