Citation: | HOU Xiang-yu, QIU Teng. Defects- and interface-enhanced Raman scattering in low-dimensional optoelectronic materials[J]. Chinese Optics, 2021, 14(1): 170-181. doi: 10.37188/CO.2020-0145 |
[1] |
FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166. doi: 10.1016/0009-2614(74)85388-1
|
[2] |
JEANMAIRE D L, VAN DUYNE R P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20. doi: 10.1016/S0022-0728(77)80224-6
|
[3] |
NIE SH M, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106. doi: 10.1126/science.275.5303.1102
|
[4] |
HOU X Y, ZHANG X Y, MA Q W, et al. Alloy engineering in few-layer manganese phosphorus trichalcogenides for surface-enhanced Raman scattering[J]. Advanced Functional Materials, 2020, 30(12): 1910171. doi: 10.1002/adfm.201910171
|
[5] |
TAO L, CHEN K, CHEN Z F, et al. 1T′ transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels[J]. Journal of the American Chemical Society, 2018, 140(28): 8696-8704. doi: 10.1021/jacs.8b02972
|
[6] |
KARTHICK KANNAN P, SHANKAR P, BLACKMAN C, et al. Recent advances in 2D inorganic nanomaterials for SERS sensing[J]. Advanced Materials, 2019, 31(34): 1803432. doi: 10.1002/adma.201803432
|
[7] |
ALESSANDRI I, LOMBARDI J R. Enhanced Raman scattering with dielectrics[J]. Chemical Reviews, 2016, 116(24): 14921-14981. doi: 10.1021/acs.chemrev.6b00365
|
[8] |
LOMBARDI J R. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; Toward the optimization of SERS sensors[J]. Faraday Discussions, 2017, 205: 105-120. doi: 10.1039/C7FD00138J
|
[9] |
程光煦. 也谈光散射增强[J]. 光散射学报,2016,28(4):374-390.
CHENG G X. Also talking about the enhanced in light scattering[J]. The Journal of Light Scattering, 2016, 28(4): 374-390. (in Chinese)
|
[10] |
HU Z H, WU ZH T, HAN C, et al. Two-dimensional transition metal dichalcogenides: Interface and defect engineering[J]. Chemical Society Reviews, 2018, 47(9): 3100-3128. doi: 10.1039/C8CS00024G
|
[11] |
LING X, XIE L M, FANG Y, et al. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561. doi: 10.1021/nl903414x
|
[12] |
HUH S, PARK J, KIM Y S, et al. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering[J]. ACS Nano, 2011, 5(12): 9799-9806. doi: 10.1021/nn204156n
|
[13] |
MAO H Y, WANG R, ZHONG J Q, et al. Mildly O2 plasma treated CVD graphene as a promising platform for molecular sensing[J]. Carbon, 2014, 76: 212-219. doi: 10.1016/j.carbon.2014.04.070
|
[14] |
SUN L F, HU H L, ZHAN D, et al. Plasma modified MoS2 nanoflakes for surface enhanced raman scattering[J]. Small, 2014, 10(6): 1090-1095. doi: 10.1002/smll.201300798
|
[15] |
YU X X, LIN K, QIU K Q, et al. Increased chemical enhancement of Raman spectra for molecules adsorbed on fluorinated reduced graphene oxide[J]. Carbon, 2012, 50(12): 4512-4517. doi: 10.1016/j.carbon.2012.05.033
|
[16] |
LV R T, LI Q, BOTELLO-MÉNDEZ A R, et al. Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing[J]. Scientific Reports, 2012, 2(1): 586. doi: 10.1038/srep00586
|
[17] |
FENG S M, CRISTINA DOS SANTOS M, CARVALHO B R, et al. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering[J]. Science Advances, 2016, 2(7): e1600322. doi: 10.1126/sciadv.1600322
|
[18] |
REN P Y, PU E Q, LIU D B, et al. Fabrication of nitrogen-doped graphenes by pulsed laser deposition and improved chemical enhancement for Raman spectroscopy[J]. Materials Letters, 2017, 204: 65-68. doi: 10.1016/j.matlet.2017.05.124
|
[19] |
SUN Y S, LIN C F, LUO S T. Two-dimensional nitrogen-enriched carbon nanosheets with surface-enhanced raman scattering[J]. The Journal of Physical Chemistry C, 2017, 121(27): 14795-14802. doi: 10.1021/acs.jpcc.7b02913
|
[20] |
DAS R, PARVEEN S, BORA A, et al. Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots[J]. Carbon, 2020, 160: 273-286. doi: 10.1016/j.carbon.2020.01.030
|
[21] |
HU L, XU ZH Y, LONG F CH, et al. Direct bandgap opening in sodium-doped antimonene quantum dots: an emerging 2D semiconductor[J]. Materials Horizons, 2020, 7(6): 1588-1596. doi: 10.1039/D0MH00440E
|
[22] |
CONG SH, YUAN Y Y, CHEN ZH G, et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies[J]. Nature Communications, 2015, 6(1): 7800. doi: 10.1038/ncomms8800
|
[23] |
HOU X Y, FAN X C, WEI PH, et al. Planar transition metal oxides SERS chips: a general strategy[J]. Journal of Materials Chemistry C, 2019, 7(36): 11134-11141. doi: 10.1039/C9TC03195B
|
[24] |
HOU X Y, LUO X G, FAN X C, et al. Plasmon-coupled charge transfer in WO3-X semiconductor nanoarrays: toward highly uniform silver-comparable SERS platforms[J]. Physical Chemistry Chemical Physics, 2019, 21(5): 2611-2618. doi: 10.1039/C8CP07305H
|
[25] |
MIAO P, WU J, DU Y CH, et al. Phase transition induced Raman enhancement on vanadium dioxide (VO2) nanosheets[J]. Journal of Materials Chemistry C, 2018, 6(40): 10855-10860. doi: 10.1039/C8TC04269A
|
[26] |
LIU W, BAI H, LI X SH, et al. Improved surface-enhanced raman spectroscopy sensitivity on metallic tungsten oxide by the synergistic effect of surface plasmon resonance coupling and charge transfer[J]. The Journal of Physical Chemistry Letters, 2018, 9(14): 4096-4100. doi: 10.1021/acs.jpclett.8b01624
|
[27] |
YU H H, ZHUANG ZH F, LI D L, et al. Photo-induced synthesis of molybdenum oxide quantum dots for surface-enhanced Raman scattering and photothermal therapy[J]. Journal of Materials Chemistry B, 2020, 8(5): 1040-1048. doi: 10.1039/C9TB02102G
|
[28] |
ZHANG J J, PAN Y M, CHEN Y F, et al. Plasmonic molybdenum trioxide quantum dots with noble metal-comparable surface enhanced Raman scattering[J]. Journal of Materials Chemistry C, 2018, 6(9): 2216-2220. doi: 10.1039/C7TC04807F
|
[29] |
WANG X Y, LI J, SHEN Y H, et al. An assembled ordered W18O49 nanowire film with high SERS sensitivity and stability for the detection of RB[J]. Applied Surface Science, 2020, 504: 144073. doi: 10.1016/j.apsusc.2019.144073
|
[30] |
YANG L L, PENG Y S, YANG Y, et al. Green and sensitive flexible semiconductor SERS substrates: hydrogenated black TiO2 nanowires[J]. ACS Applied Nano Materials, 2018, 1(9): 4516-4527. doi: 10.1021/acsanm.8b00796
|
[31] |
ANBAZHAGAN R, VADIVELMURUGAN A, TSAI H C, et al. Surface-enhanced Raman scattering of alkyne-conjugated MoS2: a comparative study between metallic and semiconductor phases[J]. Journal of Materials Chemistry C, 2018, 6(5): 1071-1082. doi: 10.1039/C7TC03682E
|
[32] |
ZUO P, JIANG L, LI X, et al. Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement[J]. Nanoscale, 2019, 11(2): 485-494. doi: 10.1039/C8NR08785G
|
[33] |
TAN Y, MA L N, GAO Z B, et al. Two-dimensional heterostructure as a platform for surface-enhanced raman scattering[J]. Nano Letters, 2017, 17(4): 2621-2626. doi: 10.1021/acs.nanolett.7b00412
|
[34] |
LI M Z, FAN X C, GAO Y M, et al. W18O49/monolayer MoS2 heterojunction-enhanced raman scattering[J]. The Journal of Physical Chemistry Letters, 2019, 10(14): 4038-4044. doi: 10.1021/acs.jpclett.9b00972
|
[35] |
SEO J, LEE J, KIM Y, et al. Ultrasensitive plasmon-free surface-enhanced raman spectroscopy with femtomolar detection limit from 2D van der waals heterostructure[J]. Nano Letters, 2020, 20(3): 1620-1630. doi: 10.1021/acs.nanolett.9b04645
|
[36] |
DANDU M, WATANABE K, TANIGUCHI T, et al. Spectrally tunable, large raman enhancement from nonradiative energy transfer in the van der waals heterostructure[J]. ACS Photonics, 2020, 7(2): 519-527. doi: 10.1021/acsphotonics.9b01648
|
[37] |
REN P Y, ZHOU W CH, REN X P, et al. Improved surface-enhanced Raman scattering (SERS) sensitivity to molybdenum oxide nanosheets via the lightning rod effect with application in detecting methylene blue[J]. Nanotechnology, 2020, 31(22): 224002. doi: 10.1088/1361-6528/ab758b
|
[38] |
LEE Y, KIM H, LEE J B, et al. Pressure-induced chemical enhancement in Raman scattering from graphene-Rhodamine 6G-graphene sandwich structures[J]. Carbon, 2015, 89: 318-327. doi: 10.1016/j.carbon.2015.03.065
|
[39] |
WU D, CHEN J L, RUAN Y E, et al. A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system[J]. Journal of Materials Chemistry C, 2018, 6(46): 12547-12554. doi: 10.1039/C8TC05151H
|
[40] |
HE CH Y, BAI H, YI W C, et al. A highly sensitive and stable SERS substrate using hybrid tungsten dioxide/carbon ultrathin nanowire beams[J]. Journal of Materials Chemistry C, 2018, 6(13): 3200-3205. doi: 10.1039/C8TC00573G
|
[41] |
CHENG H H, ZHAO Y, FAN Y Q, et al. Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement[J]. ACS Nano, 2012, 6(3): 2237-2244. doi: 10.1021/nn204289t
|
[42] |
LIVINGSTONE R, ZHOU X C, TAMARGO M C, et al. Surface enhanced Raman spectroscopy of pyridine on CdSe/ZnBeSe quantum dots grown by molecular beam epitaxy[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17460-17464. doi: 10.1021/jp105619m
|
[43] |
QUAGLIANO L G. Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering[J]. Journal of the American Chemical Society, 2004, 126(23): 7393-7398. doi: 10.1021/ja031640f
|
[44] |
LOMBARDI J R, BIRKE R L. The theory of surface-enhanced Raman scattering[J]. The Journal of Chemical Physics, 2012, 136(14): 144704. doi: 10.1063/1.3698292
|
[45] |
XU H, XIE L M, ZHANG H L, et al. Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene[J]. ACS Nano, 2011, 5(7): 5338-5344. doi: 10.1021/nn103237x
|
[46] |
ZHOU C L, SUN L F, ZHANG F Q, et al. Electrical tuning of the sers enhancement by precise defect density control[J]. ACS Applied Materials &Interfaces, 2019, 11(37): 34091-34099.
|
[47] |
LIN J, YU J, AKAKURU O U, et al. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets[J]. Chemical Science, 2020, 11(35): 9414-9420. doi: 10.1039/D0SC02712J
|
[48] |
WU H, WANG H, LI G H. Metal oxide semiconductor SERS-active substrates by defect engineering[J]. Analyst, 2017, 142(2): 326-335. doi: 10.1039/C6AN01959E
|
[49] |
QIU H W, WANG M Q, ZHANG L, et al. Wrinkled 2H-phase MoS2 sheet decorated with graphene-microflowers for ultrasensitive molecular sensing by plasmon-free SERS enhancement[J]. Sensors and Actuators B:Chemical, 2020, 320: 128445. doi: 10.1016/j.snb.2020.128445
|