Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
TIAN Hui-jun, LIU Qiao-li, YUE Heng, HU An-qi, GUO Xia. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212. doi: 10.37188/CO.2020-0153
Citation: TIAN Hui-jun, LIU Qiao-li, YUE Heng, HU An-qi, GUO Xia. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212. doi: 10.37188/CO.2020-0153

Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed

Funds:  Supported by the National Key Research and Development Program of China (No. 2017YFF0104801); National Natural Science Foundation of China (No. 61804012)
More Information
  • Author Bio:

    TIAN Hui-jun (1984—), PhD student, Institute of Laser Engineering, Beijing University of Technology, China. His research interests focus on graphene-based photodetectors. E-mail: tianhj@emails.bjut.edu.cn

    GUO Xia (1974—), Professor, School of Electronic Engineering, Beijing University of Posts and Telecommunications, China. Her research interests are on high-response PIN diodes, high speed VCSELs and ultrahigh-sensitive photodetectors in Graphene. E-mail: guox@bupt.edu.cn

  • Corresponding author: anqihu@bupt.edu.cnguox@bupt.edu.cn
  • Received Date: 01 Sep 2020
  • Rev Recd Date: 14 Sep 2020
  • Available Online: 07 Dec 2020
  • Publish Date: 25 Jan 2021
  • Hybrid graphene/semiconductor phototransistors have attracted great attention because of their ultrahigh responsivity. However, the specific detectivity (D*) for such hybrid phototransistors obtained from source-drain electrodes is assumed to be 1/f noise. In this paper, D* of ~1.82×1011 Jones was achieved from source-gate electrodes. Compared with the same device which was measured from source-drain electrodes, D* was improved by ~500 times. This could be attributed to the carrier trapping and detrapping processes having been screened by the Schottky barrier at the interface. The rise and decay times were 4 ms and 37 ms, respectively. The temporal response speed also correspondingly improved by ~2 orders of magnitude. This work provides an alternative route toward light photodetectors with high specific detectivity and speed.

     

  • loading
  • [1]
    KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793. doi: 10.1038/nnano.2014.215
    [2]
    NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965
    [3]
    GUO X T, WANG W H, NAN H Y, et al. High-performance graphene photodetector using interfacial gating[J]. Optica, 2016, 3(10): 1066-1070. doi: 10.1364/OPTICA.3.001066
    [4]
    GREBENCHUKOV A N, ZAITSEV A D, KHODZITSKY M K. Optically controlled narrowband terahertz switcher based on graphene[J]. Chinese Optics, 2018, 11(2): 166-173. doi: 10.3788/co.20181102.0166
    [5]
    HU A Q, TIAN H J, LIU Q L, et al. Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors[J]. Advanced Optical Materials, 2019, 7(8): 1801792. doi: 10.1002/adom.201801792
    [6]
    LIU Q L, TIAN H J, LI J W, et al. Hybrid graphene/Cu2O quantum dot photodetectors with ultrahigh responsivity[J]. Advanced Optical Materials, 2019, 7(20): 1900455. doi: 10.1002/adom.201900455
    [7]
    GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. doi: 10.1126/science.1176706
    [8]
    WANG G SH, LU H, CHEN D J, et al. High quantum efficiency GaN-based p-i-n ultraviolet photodetectors prepared on patterned sapphire substrates[J]. IEEE Photonics Technology Letters, 2013, 25(7): 652-654. doi: 10.1109/LPT.2013.2248056
    [9]
    BALANDIN A A. Low-frequency 1/f noise in graphene devices[J]. Nature Nanotechnology, 2013, 8(8): 549-555. doi: 10.1038/nnano.2013.144
    [10]
    LU Y H, FENG S R, WU ZH Q, et al. Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity[J]. Nano Energy, 2018, 47: 140-149. doi: 10.1016/j.nanoen.2018.02.056
    [11]
    TIAN H J, HU A Q, LIU Q L, et al. Interface-induced high responsivity in hybrid graphene/GaAs photodetector[J]. Advanced Optical Materials, 2020, 8(8): 1901741. doi: 10.1002/adom.201901741
    [12]
    HU W D, LI Q, CHEN X SH, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese)
    [13]
    CHEN Y Y, WANG C H, CHEN G S, et al. Self-powered n-MgxZn1−xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect[J]. Nano Energy, 2015, 11: 533-539. doi: 10.1016/j.nanoen.2014.09.037
    [14]
    FAUSKE V T, HUH J, DIVITINI G, et al. In situ heat-induced replacement of GaAs nanowires by Au[J]. Nano Letters, 2016, 16(5): 3051-3057. doi: 10.1021/acs.nanolett.6b00109
    [15]
    ZHANG X T, ZHANG L N, CHAN M S. Doping enhanced barrier lowering in graphene-silicon junctions[J]. Applied Physics Letters, 2016, 108(26): 263502. doi: 10.1063/1.4954799
    [16]
    LI X Q, LIN SH SH, LIN X, et al. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector[J]. Optics Express, 2016, 24(1): 134-145. doi: 10.1364/OE.24.000134
    [17]
    CANCADO L G, JORIO A, FERREIRA E H M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011, 11(8): 3190-3196. doi: 10.1021/nl201432g
    [18]
    HAO Y F, WANG Y Y, WANG L, et al. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy[J]. Small, 2010, 6(2): 195-200. doi: 10.1002/smll.200901173
    [19]
    DI BARTOLOMEO A. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction[J]. Physics Reports, 2016, 606: 1-58. doi: 10.1016/j.physrep.2015.10.003
    [20]
    TONGAY S, LEMAITRE M, MIAO X, et al. Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes[J]. Physics Review X, 2012, 2(1): 011002.
    [21]
    LIN F, CHEN SH W, MENG J, et al. Graphene/GaN diodes for ultraviolet and visible photodetectors[J]. Applied Physics Letters, 2014, 105(7): 073103. doi: 10.1063/1.4893609
    [22]
    NI ZH Y, MA L L, DU S CH, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 2017, 11(10): 9854-9862. doi: 10.1021/acsnano.7b03569
    [23]
    ZENG L H, WU D, LIN SH H, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications[J]. Advanced Functional Materials, 2019, 29(1): 1806878. doi: 10.1002/adfm.201806878
    [24]
    MEIRZADEH E, CHRISTENSEN D V, MAKAGON E, et al. Surface pyroelectricity in cubic SrTiO3[J]. Advanced Materials, 2019, 31(44): 1904733. doi: 10.1002/adma.201904733
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views(1986) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return